Detalhes bibliográficos
Ano de defesa: |
2014 |
Autor(a) principal: |
Docusse, Tiago Alexandre [UNESP] |
Orientador(a): |
Não Informado pela instituição |
Banca de defesa: |
Não Informado pela instituição |
Tipo de documento: |
Tese
|
Tipo de acesso: |
Acesso aberto |
Idioma: |
por |
Instituição de defesa: |
Universidade Estadual Paulista (Unesp)
|
Programa de Pós-Graduação: |
Não Informado pela instituição
|
Departamento: |
Não Informado pela instituição
|
País: |
Não Informado pela instituição
|
Palavras-chave em Português: |
|
Link de acesso: |
http://hdl.handle.net/11449/100296
|
Resumo: |
Estudos internacionais indicam que o câncer de mama é o segundo maior causador de mortes em mulheres com câncer no mundo, e a melhor forma de tratar essa doença é através de seu diagnóstico precoce, que pode ser realizado através da análise de imagens de mamografias digitais. Uma das formas de se realizar o diagnóstico através de imagens é procurar por microcalcificações, pequenos acúmulos de cálcio que podem ser classificados em cinco tipos, de acordo com a classificação de Le Gal. Neste trabalho é apresentado um sistema embarcado que foi desenvolvido para classificar microcalcificações de acordo com a classificação de Le Gal, utilizando wavelets e redes neurais artificiais. O sistema foi desenvolvido utilizando-se um processador Nios II, através da configuração do hardware projetado na FPGA presente na placa DE2-115. Os testes com imagens simuladas apresentaram 92,50% de acerto nas suas classificações. Testes com algumas imagens reais também apresentaram bons resultados na classificação das microcalcificações. Isto tudo indica a possibilidade de se utilizar equipamentos embarcados no diagnóstico precoce do câncer de mama. |