Multi-objective optimization of a neural network-based nonlinear equalizer in unrepeated digital coherent optical communication systems

Detalhes bibliográficos
Ano de defesa: 2024
Autor(a) principal: Dantas, Lucas Cardinal [UNESP]
Orientador(a): Não Informado pela instituição
Banca de defesa: Não Informado pela instituição
Tipo de documento: Dissertação
Tipo de acesso: Acesso aberto
Idioma: eng
Instituição de defesa: Universidade Estadual Paulista (Unesp)
Programa de Pós-Graduação: Não Informado pela instituição
Departamento: Não Informado pela instituição
País: Não Informado pela instituição
Palavras-chave em Português:
Link de acesso: https://hdl.handle.net/11449/259327
Resumo: In this work, we propose using neural networks to mitigate intersymbol interference introduced by the fiber in optical communication systems. This mitigation method is well known, nevertheless the majority of studies that we traced back in the literature process only the symbol of interest, and consequently, cannot compensate the intersymbol interference. The approach presented in this work includes also using adjacent symbols, as there is a correlation between these symbols distortion. But, this increases the computational complexity. For that reason, we also analyzed the computational complexity to train the neural network. We were not able to trace back in the literature works that performed this multi-objective analysis, taking into account the adjacent symbols for training the neural network and also the computational complexity.