Detalhes bibliográficos
Ano de defesa: |
2016 |
Autor(a) principal: |
Silva, Eder Marques da [UNESP] |
Orientador(a): |
Não Informado pela instituição |
Banca de defesa: |
Não Informado pela instituição |
Tipo de documento: |
Tese
|
Tipo de acesso: |
Acesso aberto |
Idioma: |
por |
Instituição de defesa: |
Universidade Estadual Paulista (Unesp)
|
Programa de Pós-Graduação: |
Não Informado pela instituição
|
Departamento: |
Não Informado pela instituição
|
País: |
Não Informado pela instituição
|
Palavras-chave em Português: |
|
Link de acesso: |
http://hdl.handle.net/11449/138875
|
Resumo: |
Fruit set, defined as the shift from quiescent ovary to a fast-growing young fruit, is a key process for fruit production in flowering plants. It has been shown that hormones (such as auxin and gibberellin) act in parallel with transcription factors during fruit set. Some of these are post-transcriptionally regulated by microRNAs (miRNAs). MiRNAs are a group of small non coding RNAs (21-22 nt) that act by regulating post-transcriptionally genes in plants and animals However, microRNA-regulated genetic pathways associated with tomato (Solanum lycopersicum L.) ovary development and fruit set remain poorly exploited. Here, we investigated the functional role of miRNA159/SlyGAMYBlike in tomato ovary development and fruit set. MiR159 and its targets were dynamically expressed in developing flowers, ovaries and fruit tissues. Transgenic tomato (cv. Micro-Tom) plants over-expressing the SlyMIR159 (termed OE-159) exhibited fruit set earlier when compared with control plants. Strikingly, all transgenic lines presented parthenocarpy fruits. Such developmental modification may be a result of the repression of SlyGAMYB1 in pre-anthesis ovaries, our data suggest that SlyGAMYB1 activity is important to prevent fruit set before pollination. In addition as a consequence of this repression, the miR167 node (miR167/SlyARF8 pathway) was mis-regulated in OE-159 ovaries. In addition, we observed that levels of auxin, gibberellin (GA) and abscisic acid (ABA) in pre-anthesis ovaries of several transgenic lines overexpressing the SlyMIR159 were similar to those of the control. Moreover, our experiments suggested that auxin and GA may act repressing the miR159 node during fruit set initiation, in order to release the miR167-targeted SlyARF8A expression during fruit set. Our data show how two microRNA nodes (miR159 and miR167) integrated with hormone signalling into a circuit that coordinates successive steps along ovary and fruit development. |