Detalhes bibliográficos
Ano de defesa: |
2012 |
Autor(a) principal: |
Mendes, Tatiana Sussel Gonçalves [UNESP] |
Orientador(a): |
Não Informado pela instituição |
Banca de defesa: |
Não Informado pela instituição |
Tipo de documento: |
Tese
|
Tipo de acesso: |
Acesso aberto |
Idioma: |
por |
Instituição de defesa: |
Universidade Estadual Paulista (Unesp)
|
Programa de Pós-Graduação: |
Não Informado pela instituição
|
Departamento: |
Não Informado pela instituição
|
País: |
Não Informado pela instituição
|
Palavras-chave em Português: |
|
Link de acesso: |
http://hdl.handle.net/11449/100791
|
Resumo: |
O problema de extração automática da malha viária urbana é extremamente complexo, uma vez que em cenas urbanas as vias apresentam forte interação com outros objetos, como obstruções provocadas por árvores, veículos e sombras de edificações e árvores. Esse problema pode ser simplificado se regiões que correspondem às vias forem previamente isoladas. Na sequência, a malha viária urbana pode ser extraída baseando-se apenas nessas regiões detectadas, obtendo resultados mais confiáveis e com redução da área de busca e do esforço computacional. A classificação de imagens pode ser usada no intuito de isolar as regiões de via, mas em cenas urbanas complexas a utilização de apenas dados espectrais pode não ser suficiente para separar com confiabilidade classes com comportamento espectral similar, por exemplo, vias e edificações de telhado cinza. Com a evolução tecnológica dos sistemas de Varredura a LASER Aerotransportado (VLA), os dados provenientes destes sistemas possuem potencial para serem usados como informações complementares contribuindo para a distinção entre essas classes. O método proposto baseia-se em duas etapas principais. A primeira etapa consiste da detecção e isolamento da classe via por meio de um método de classificação por Redes Neurais Artificiais (RNA) integrando dados... |