Soluções do tipo vórtice em um modelo de Maxwell-Chern-Simons-Higgs com campos de Gauge distintos

Detalhes bibliográficos
Ano de defesa: 2015
Autor(a) principal: Guimarães, Thiago Vinícius Moreira [UNESP]
Orientador(a): Não Informado pela instituição
Banca de defesa: Não Informado pela instituição
Tipo de documento: Dissertação
Tipo de acesso: Acesso aberto
Idioma: por
Instituição de defesa: Universidade Estadual Paulista (Unesp)
Programa de Pós-Graduação: Não Informado pela instituição
Departamento: Não Informado pela instituição
País: Não Informado pela instituição
Palavras-chave em Português:
Link de acesso: http://hdl.handle.net/11449/124388
http://www.athena.biblioteca.unesp.br/exlibris/bd/cathedra/10-06-2015/000833150.pdf
Resumo: In this dissertation we mean to seek vortex solutions in a model not found in literature, consisting in Lagrangian density given by a Maxwell term generated by a field gauge A mu,and Chern-Simons term generated by another field gauge Aµ, using a self-dual potential with nontrivial sixth-order vacuum. This model features an interesting first order equation for Ø, with solution exact, but it is not consistent with the second order equation, and therefore invalid. Moreover, it was not possible to minimize the model's energy, since the contribution of the electric field can not be eliminated without causing inconsistencies in the equations of motion. To try work around this problem, we tried to introduce a new mixed Chern-Simons term, composed of two fields Aµ and Aµ. In this context the energy was minimized without causing problems the equations of motion, but has not yet been possible to obtain vortex solutions, because the solutions to Ø diverges. Again, without the vortex solutions, the original model has changed, to contain a real scalar field N. Thus, the energy of the system was minimized and topological vortex solutions were found. Yet, we developed an idiosyncratic approach to the Bogomol'nyi's mechanism without the direct need to complete square and naturally based on the consistency between the self-duals equations and equations of motion