Detalhes bibliográficos
Ano de defesa: |
2019 |
Autor(a) principal: |
Ribeiro, Luiz Carlos Felix |
Orientador(a): |
Não Informado pela instituição |
Banca de defesa: |
Não Informado pela instituição |
Tipo de documento: |
Dissertação
|
Tipo de acesso: |
Acesso aberto |
Idioma: |
por |
Instituição de defesa: |
Universidade Estadual Paulista (Unesp)
|
Programa de Pós-Graduação: |
Não Informado pela instituição
|
Departamento: |
Não Informado pela instituição
|
País: |
Não Informado pela instituição
|
Palavras-chave em Português: |
|
Link de acesso: |
http://hdl.handle.net/11449/182030
|
Resumo: |
A disponibilidade cada vez maior de dados em domínio textual tem motivado o desenvolvimento de técnicas baseadas em Processamento de Linguagem Natural para extrair informações estruturadas desse meio. Particularmente ,técnicas de Análise de Sentimento permitem identificar a emoção presente em um fragmento de texto e podem ser utilizadas para diferentes fins, seja priorizar o atendimento de clientes insatisfeitos ou aferir o satisfação do interlocutor durante uma conversa. No que concerne ao uso desse tipo de técnica em diálogos, trabalhos na literatura mostram que considerar informações extraídas de mensagens antecessoras para classificar a atual leva a melhores resultados, seja para a identificação de interlocutores ou intenção das mensagens. Todavia, essa abordagem ainda não tem sido largamente empregada para a Análise de Sentimento e, quando utilizada, a mesma não alia a robustez dos word embeddings, técnica desenvolvida recentemente, com os rótulos preditos no passado, mas considera apenas o histórico de características extraídas anteriormente. O presente trabalho propõe o desenvolvimento de um modelo baseado em aprendizado de máquina para a Análise de Sentimento em conversas no domínio textual ao levar em consideração seu contexto. Essa fonte de informação pode ser explorada ao considerar rótulos de mensagens anteriores, suas características, a identidade dos interlocutores e como as palavras são combinadas em cada mensagem. Resultados experimentais mostram que estes aspectos permitem superar o estado-da-arte em quatro bases de dados diferentes. |