Análise de sentimento contextual em diálogos utilizando aprendizado de máquina

Detalhes bibliográficos
Ano de defesa: 2019
Autor(a) principal: Ribeiro, Luiz Carlos Felix
Orientador(a): Não Informado pela instituição
Banca de defesa: Não Informado pela instituição
Tipo de documento: Dissertação
Tipo de acesso: Acesso aberto
Idioma: por
Instituição de defesa: Universidade Estadual Paulista (Unesp)
Programa de Pós-Graduação: Não Informado pela instituição
Departamento: Não Informado pela instituição
País: Não Informado pela instituição
Palavras-chave em Português:
Link de acesso: http://hdl.handle.net/11449/182030
Resumo: A disponibilidade cada vez maior de dados em domínio textual tem motivado o desenvolvimento de técnicas baseadas em Processamento de Linguagem Natural para extrair informações estruturadas desse meio. Particularmente ,técnicas de Análise de Sentimento permitem identificar a emoção presente em um fragmento de texto e podem ser utilizadas para diferentes fins, seja priorizar o atendimento de clientes insatisfeitos ou aferir o satisfação do interlocutor durante uma conversa. No que concerne ao uso desse tipo de técnica em diálogos, trabalhos na literatura mostram que considerar informações extraídas de mensagens antecessoras para classificar a atual leva a melhores resultados, seja para a identificação de interlocutores ou intenção das mensagens. Todavia, essa abordagem ainda não tem sido largamente empregada para a Análise de Sentimento e, quando utilizada, a mesma não alia a robustez dos word embeddings, técnica desenvolvida recentemente, com os rótulos preditos no passado, mas considera apenas o histórico de características extraídas anteriormente. O presente trabalho propõe o desenvolvimento de um modelo baseado em aprendizado de máquina para a Análise de Sentimento em conversas no domínio textual ao levar em consideração seu contexto. Essa fonte de informação pode ser explorada ao considerar rótulos de mensagens anteriores, suas características, a identidade dos interlocutores e como as palavras são combinadas em cada mensagem. Resultados experimentais mostram que estes aspectos permitem superar o estado-da-arte em quatro bases de dados diferentes.