Detalhes bibliográficos
Ano de defesa: |
2017 |
Autor(a) principal: |
Galhardi, Vinícius Vassoler [UNESP] |
Orientador(a): |
Não Informado pela instituição |
Banca de defesa: |
Não Informado pela instituição |
Tipo de documento: |
Dissertação
|
Tipo de acesso: |
Acesso aberto |
Idioma: |
por |
Instituição de defesa: |
Universidade Estadual Paulista (Unesp)
|
Programa de Pós-Graduação: |
Não Informado pela instituição
|
Departamento: |
Não Informado pela instituição
|
País: |
Não Informado pela instituição
|
Palavras-chave em Português: |
|
Link de acesso: |
http://hdl.handle.net/11449/148746
|
Resumo: |
Ataques às redes de computadores têm sido cada vez mais constantes e possuem grande capacidade destrutiva. Os sistemas de detecção de intrusão possuem um importante papel na detecção destas ameaças. Dentre estes sistemas, a detecção de anomalias tem sido uma área amplamente explorada devido à possibilidade de detectar ataques até então desconhecidos. Devido à complexidade para a geração de modelos que sejam capazes de descrever o comportamento padrão de um ambiente, técnicas de aprendizagem automática vêm sendo amplamente exploradas. Este trabalho aborda a detecção de ataques a redes de computadores utilizando uma combinação de técnicas de agrupamento. Desse modo, espera-se obter um sistema adaptativo, capaz de encontrar anomalias presentes na rede sem a necessidade de uma etapa de treinamento com dados rotulados. Dado que a taxa de falsos negativos é um dos maiores problemas encontrados na utilização de algoritmos não supervisionados, pretende-se alcançar uma melhora neste quesito através do uso combinado de diferentes técnicas. |