Elementos algébricos para a noção de poucos e sua formalização em sistemas lógicos dedutivos

Detalhes bibliográficos
Ano de defesa: 2011
Autor(a) principal: Golzio, Ana Claudia de Jesus [UNESP]
Orientador(a): Não Informado pela instituição
Banca de defesa: Não Informado pela instituição
Tipo de documento: Dissertação
Tipo de acesso: Acesso aberto
Idioma: por
Instituição de defesa: Universidade Estadual Paulista (Unesp)
Programa de Pós-Graduação: Não Informado pela instituição
Departamento: Não Informado pela instituição
País: Não Informado pela instituição
Palavras-chave em Português:
Link de acesso: http://hdl.handle.net/11449/91769
Resumo: Grácio (1999), em sua tese de doutorado intitulada “Lógicas moduladas e raciocínio sob in-certeza”, estabeleceu uma formalização no ambiente quantificacional para o termo da lingua-gem natural: “muitos”. Buscando a formalização desse conceito no ambiente proposicional, Feitosa, Nascimento e Grácio (2009) no artigo “Algebraic elements for the notions of „many‟”, apresentam uma estrutura matemática denominada conjuntos fechados superior-mente que torna possível o desenvolvimento de uma álgebra para “muitos” e também de uma lógica proposicional para “muitos”. De modo similar ao trabalho apresentado por Feitosa, Nascimento e Grácio (2009) para a noção de “muitos”, este trabalho investiga os elementos algébricos necessários para a formalização da noção de “poucos” e desenvolve uma álgebra para “poucos”, que tem como base uma estrutura matemática denominada conjuntos quase fechados inferiormente. A partir dessa álgebra para “poucos”, este trabalho apresenta uma lógica proposicional para “poucos” (LPP) nos sistemas dedutivos: hilbertiano e tableaux