Detalhes bibliográficos
Ano de defesa: |
2011 |
Autor(a) principal: |
Silva, Aline Pereira da [UNESP] |
Orientador(a): |
Não Informado pela instituição |
Banca de defesa: |
Não Informado pela instituição |
Tipo de documento: |
Dissertação
|
Tipo de acesso: |
Acesso aberto |
Idioma: |
por |
Instituição de defesa: |
Universidade Estadual Paulista (Unesp)
|
Programa de Pós-Graduação: |
Não Informado pela instituição
|
Departamento: |
Não Informado pela instituição
|
País: |
Não Informado pela instituição
|
Palavras-chave em Português: |
|
Link de acesso: |
http://hdl.handle.net/11449/91894
|
Resumo: |
Este trabalho tem como objetivo entender e desenvolver estudos relacionados à sincronização de fase em sistemas dinâmicos discretos. Foi utilizado um modelo simples de osciladores não-lineares denominado mapa circular. Inicialmente é apresentado um estudo extensivo do mapa circular e suas propriedades dinâmicas. É apresentado também a transição de movimento quase-periódico para movimento caótico em uma rota quase-periódica para o caos do mapa circular. Em seguida, foram acoplados dois mapas circulares através de um acoplamento bidirecional não linear. O efeito de transição para o estado síncrono é induzido por uma crise interior, através do surgimento de um atrator caótico, o qual induz periodicidade oscilatória no sistema. É mostrado que a sincronização de dois mapas circulares acoplados é influenciada pela diferença do número de rotação e a intensidade do parâmetro de não linearidade. A transição para o estado não síncrono é induzida por uma crise interior, através da expansão do atrator caótico até perder sua periodicidade. Posteriormente, foi introduzido um ruído branco gaussiano no acoplamento e um ruído aditivo em dois sistemas diferentes de dois mapas circulares acoplados. Os resultados obtidos para o primeiro sistema mostraram que no espaço de fases, a ação de um ruído branco gaussiano no acoplamento e aditivo destroem o atrator caótico, e o sistema perde sincronização de fase perfeita e imperfeita. Os resultados obtidos para o segundo sistema mostraram que no espaço de fases, a ação de um ruído branco gaussiano no acoplamento destrói o atrator caótico, e o sistema perde sincronização de fase perfeita e imperfeita. No entanto, a ação de um ruído branco gaussiano aditivo induz um efeito de segunda ordem, no qual ocorre a dessincronização de fase imperfeita... |