Implementação do algoritmo de treinamento do classificador Floresta de Caminhos Ótimos em GPU

Detalhes bibliográficos
Ano de defesa: 2013
Autor(a) principal: Iwashita, Adriana Sayuri [UNESP]
Orientador(a): Não Informado pela instituição
Banca de defesa: Não Informado pela instituição
Tipo de documento: Dissertação
Tipo de acesso: Acesso aberto
Idioma: por
Instituição de defesa: Universidade Estadual Paulista (Unesp)
Programa de Pós-Graduação: Não Informado pela instituição
Departamento: Não Informado pela instituição
País: Não Informado pela instituição
Palavras-chave em Português:
Link de acesso: http://hdl.handle.net/11449/89347
Resumo: Técnicas de reconhecimento de padrões têm como principal objetivo classificar um conjunto de amostras baseadas em um conhecimento a prioriou em alguma informação estatística obtida dessas amostras. Tal processo de aprendizado é a fase de maior consumo de tempo na grande maioria das técnicas de reconhecimento de padrõe. O problema ainda pode piorar em ferramentas de classificação interativas, nas quais o usuário é solicitado a rotular amostras que serão utilizadas para o treinamento, e após a classificação, os resultados podem ser refina-dos através de mais amostras rotuladas manualmente. Esta situação pode ser inaceitável para grandes bases de dados. Dado que muitos trabalhos tem sido orientados à implementação de vários algoritmos de reconhecimento de padrôes em ambiente General Purpose Graphics Processing Unit- GPGPU, o presente estudo objetivou a implementação da etapa de treinamento do classificador Floresta de Caminhos Ótimos em Compute Unified Device Architecture- CUDA visando aumentar a sua eficiência. Foi implementada uma otimização, do referido classificador utilizando os métodos tradicionais, ou seja, na Central Processing Unit- CPU, e demonstrou uma fase de treinamento cerca de duas vezes mais rápida que a versão original. A otimização do classificador em CUDA também demonstrou uma fase de treinamento mais rápida que a versão original