Ambiente data cleaning: suporte extensível, semântico e automático para análise e transformação de dados

Detalhes bibliográficos
Ano de defesa: 2012
Autor(a) principal: Jardini, Toni [UNESP]
Orientador(a): Não Informado pela instituição
Banca de defesa: Não Informado pela instituição
Tipo de documento: Dissertação
Tipo de acesso: Acesso aberto
Idioma: por
Instituição de defesa: Universidade Estadual Paulista (Unesp)
Programa de Pós-Graduação: Não Informado pela instituição
Departamento: Não Informado pela instituição
País: Não Informado pela instituição
Palavras-chave em Português:
Link de acesso: http://hdl.handle.net/11449/98702
Resumo: Um dos grandes desa os e di culdades para se obter conhecimento de fontes de dados e garantir consistência e a não duplicidade das informações armazenadas. Diversas técnicas e algoritmos têm sido propostos para minimizar o custoso trabalho de permitir que os dados sejam analisados e corrigidos. Porém, ainda há outras vertentes essenciais para se obter sucesso no processo de limpeza de dados, e envolvem diversas areas tecnológicas: desempenho computacional, semântica e autonomia do processo. Diante desse cenário, foi desenvolvido um ambiente data cleaningque contempla uma coleção de ferramentas de suporte a análise e transformação de dados de forma automática, extensível, com suporte semântico e aprendizado, independente de idioma. O objetivo deste trabalho e propor um ambiente cujas contribuições cobrem problemas ainda pouco explorados pela comunidade científica area de limpeza de dados como semântica e autonomia na execução da limpeza e possui, dentre seus objetivos, diminuir a interação do usuário no processo de análise e correção de inconsistências e duplicidades. Dentre as contribuições do ambiente desenvolvido, a eficácia se mostras significativa, cobrindo aproximadamente 90% do total de inconsistências presentes na base de dados, com percentual de casos de falsos-positivos 0% sem necessidade da interação do usuário