Detalhes bibliográficos
Ano de defesa: |
2016 |
Autor(a) principal: |
Daniel, Guilherme Priólli [UNESP] |
Orientador(a): |
Não Informado pela instituição |
Banca de defesa: |
Não Informado pela instituição |
Tipo de documento: |
Dissertação
|
Tipo de acesso: |
Acesso aberto |
Idioma: |
por |
Instituição de defesa: |
Universidade Estadual Paulista (Unesp)
|
Programa de Pós-Graduação: |
Não Informado pela instituição
|
Departamento: |
Não Informado pela instituição
|
País: |
Não Informado pela instituição
|
Palavras-chave em Português: |
|
Link de acesso: |
http://hdl.handle.net/11449/143832
|
Resumo: |
A quantidade de dados gerenciados por serviços Web de grande escala tem crescido significantemente e passaram a ser chamados de Big Data. Esses conjuntos de dados podem ser definidos como um grande volume de dados complexos provenientes de múltiplas fontes que ultrapassam a capacidade de armazenamento e processamento dos computadores atuais. Dentro desses conjuntos, estima-se que 80% dos dados possuem associação com alguma posição espacial. Os dados espaciais são mais complexos e demandam mais tempo de processamento que os dados alfanuméricos. Nesse sentido, as técnicas de MapReduce e sua implementação têm sido utilizadas a fim de retornar resultados em tempo hábil com a paralelização dos algoritmos de prospecção de dados. Portanto, o presente trabalho propõe dois algoritmos de agrupamento espacial baseado em densidade: o VDBSCAN-MR e o OVDBSCAN-MR. Ambos os algoritmos utilizam técnicas de processamento distribuído e escalável baseadas no modelo de programação MapReduce com intuito de otimizar o desempenho e permitir a análise em conjuntos Big Data. Por meio dos experimentos realizados foi possível verificar que os algoritmos desenvolvidos apresentaram melhor qualidade nos agrupamentos encontrados em comparação com os algoritmos tomados como base. Além disso, o VDBSCAN-MR obteve um melhor desempenho que o algoritmo sequencial e suportou a aplicação em grandes conjuntos de dados espaciais. |