Detalhes bibliográficos
Ano de defesa: |
2019 |
Autor(a) principal: |
Ragiotto, Lucas |
Orientador(a): |
Não Informado pela instituição |
Banca de defesa: |
Não Informado pela instituição |
Tipo de documento: |
Dissertação
|
Tipo de acesso: |
Acesso aberto |
Idioma: |
por |
Instituição de defesa: |
Universidade Estadual Paulista (Unesp)
|
Programa de Pós-Graduação: |
Não Informado pela instituição
|
Departamento: |
Não Informado pela instituição
|
País: |
Não Informado pela instituição
|
Palavras-chave em Português: |
|
Link de acesso: |
http://hdl.handle.net/11449/181782
|
Resumo: |
Em problemas de regressão, na busca por um modelo parcimonioso, o pesquisador pode se deparar com adversidades, por exemplo, a existência de colinearidade entre as regressoras, dificultando a seleção de variáveis. Dessa forma, com a implementação de ferramentas inspiradas nas propostas de Murray et al. (2013), Muller & Welsh (2010) e Jiang et al. (2009) no pacote mplot (Tarr et al., 2018) no software R, pode-se, gráfica e interativamente, estudar em detalhes a estabilidade e a importância de inclusão de covariáveis para a construção de modelos. Neste trabalho, medidas de estabilidade e probabilidade de inclusão de variáveis foram obtidas pelo método bootstrap. Medidas resumo de qualidade do ajuste são baseadas no critério de informação generalizado, que incorpora, como casos particulares, os critérios de informação de Akaike e o Bayesiano, e reflete a perda (associada ao ajuste de um modelo simplificado) mais uma penalização à complexidade do modelo. Ao aplicar a teoria de seleção de variáveis, utilizando as ferramentas gráficas no ajuste de um modelo de regressão linear Normal e regressão Binomial, foi possível reconhecer seu potencial e utilidade no processo de formulação de modelos, no qual a incorporação de conhecimento do especialista da área pode ser feita de maneira natural, já que o processo não é automático. Isso é mais um diferencial em relação aos métodos usuais de seleção de variáveis que também foram aplicados aos mesmos conjuntos de dados para efeito de discussão. |