Detalhes bibliográficos
Ano de defesa: |
2016 |
Autor(a) principal: |
Quesada, John Hadder Sandoval [UNESP] |
Orientador(a): |
Não Informado pela instituição |
Banca de defesa: |
Não Informado pela instituição |
Tipo de documento: |
Dissertação
|
Tipo de acesso: |
Acesso aberto |
Idioma: |
eng |
Instituição de defesa: |
Universidade Estadual Paulista (Unesp)
|
Programa de Pós-Graduação: |
Não Informado pela instituição
|
Departamento: |
Não Informado pela instituição
|
País: |
Não Informado pela instituição
|
Palavras-chave em Português: |
|
Link de acesso: |
http://hdl.handle.net/11449/136352
|
Resumo: |
Este trabalho foca no estudo de sistemas de poucos corpos em duas dimensões no regime universal, onde as propriedades do sistema quântico independem dos detalhes da interação de curto alcance entre as partículas (o comprimento de espalhamento de dois corpos é muito maior que o alcance do potencial). Nós utilizamos a decomposição de Faddeev para escrever as equações para os estados ligados. Através da solução numérica dessas equações nós calculamos as energias de ligação e os raios quadráticos médios de um sistema composto por dois bósons (A) e uma partícula diferente (B). Para uma razão de massas mB/mA = 0.01 o sistema apresenta oito estados ligados de três corpos, os quais desaparecem um por um conforme aumentamos a razão de massas restando somente os estados fundamental e primeiro excitado. Os comportamentos das energias e dos raios para razões de massa pequenas podem ser entendidos através de um potencial do tipo Coulomb a curtas distâncias (onde o estado fundamental está localizado) que aparece quando utilizamos uma aproximação de Born-Oppenheimer. Para grandes razões de massa os dois estados ligados restantes são consistentes com uma estrutura de três corpos mais simétrica. Nós encontramos que no limiar da razão de massas em que os estados desaparecem os raios divergem linearmente com as energias de três corpos escritas em relação ao limiar de dois corpos. |