Estrutura de vínculos da gravitação via Hamilton-Jacobi: relatividade geral e teleparalelismo
Ano de defesa: | 2003 |
---|---|
Autor(a) principal: | |
Orientador(a): | |
Banca de defesa: | |
Tipo de documento: | Dissertação |
Tipo de acesso: | Acesso aberto |
Idioma: | por |
Instituição de defesa: |
Universidade Estadual Paulista (Unesp)
|
Programa de Pós-Graduação: |
Não Informado pela instituição
|
Departamento: |
Não Informado pela instituição
|
País: |
Não Informado pela instituição
|
Palavras-chave em Português: | |
Link de acesso: | http://hdl.handle.net/11449/132667 http://www.athena.biblioteca.unesp.br/exlibris/bd/cathedra/06-01-2016/000854694.pdf |
Resumo: | Neste trabalho estudamos a estrutura de vínculos da Relatividade Geral (RG) e do Equivalente Teleparalelo da Relatividade Geral (ETRG), utilizando o formalismo de Hamilton-Jacobi para sistemas singulares. Fazemos uma revisão destas duas teorias de gravitação e de suas formulações ADM, tendo em mente que ambas são construídas sobre variedades que são casos particulares da variedade de Riemann-Cartan. Revemos também o formalismo de Hamilton-Jacobi para o tratamento de sistemas singulares, fazendo em seguida a sua aplicação para as duas teorias supracitadas. Nesta análise constatamos que a invariância do ETRG por transformações de Lorentz no espaço tangente das tetradas faz com que a álgebra do vínculos seja diferente daquela obtida para a RG |