Detalhes bibliográficos
Ano de defesa: |
2011 |
Autor(a) principal: |
Andrade, Tiago Luís de [UNESP] |
Orientador(a): |
Não Informado pela instituição |
Banca de defesa: |
Não Informado pela instituição |
Tipo de documento: |
Dissertação
|
Tipo de acesso: |
Acesso aberto |
Idioma: |
por |
Instituição de defesa: |
Universidade Estadual Paulista (Unesp)
|
Programa de Pós-Graduação: |
Não Informado pela instituição
|
Departamento: |
Não Informado pela instituição
|
País: |
Não Informado pela instituição
|
Palavras-chave em Português: |
|
Link de acesso: |
http://hdl.handle.net/11449/98678
|
Resumo: |
Com o objetivo de garantir maior confiabilidade e consistência dos dados armazenados em banco de dados, a etapa de limpeza de dados está situada no início do processo de Descoberta de Conhecimento em Base de Dados (Knowledge Discovery in Database - KDD). Essa etapa tem relevância significativa, pois elimina problemas que refletem fortemente na confiabilidade do conhecimento extraído, como valores ausentes, valores nulos, tuplas duplicadas e valores fora do domínio. Trata-se de uma etapa importante que visa a correção e o ajuste dos dados para as etapas posteriores. Dentro dessa perspectiva, são apresentadas técnicas que buscam solucionar os diversos problemas mencionados. Diante disso, este trabalho tem como metodologia a caracterização da detecção de tuplas duplicadas em banco de dados, apresentação dos principais algoritmos baseados em métricas de distância, algumas ferramentas destinadas para tal atividade e o desenvolvimento de um algoritmo para identificação de registros duplicados baseado em similaridade fonética e numérica independente de idioma, desenvolvido por meio da funcionalidade multithreading para melhorar o desempenho em relação ao tempo de execução do algoritmo. Os testes realizados demonstram que o algoritmo proposto obteve melhores resultados na identificação de registros duplicados em relação aos algoritmos fonéticos existentes, fato este que garante uma melhor limpeza da base de dados |