Um estudo introdutório sobre o Teorema do Ponto Fixo de Banach e aplicações

Detalhes bibliográficos
Ano de defesa: 2024
Autor(a) principal: Santos, Francisco José dos
Orientador(a): Não Informado pela instituição
Banca de defesa: Não Informado pela instituição
Tipo de documento: Dissertação
Tipo de acesso: Acesso aberto
Idioma: por
Instituição de defesa: Universidade Estadual Paulista (Unesp)
Programa de Pós-Graduação: Não Informado pela instituição
Departamento: Não Informado pela instituição
País: Não Informado pela instituição
Palavras-chave em Português:
Link de acesso: https://hdl.handle.net/11449/253871
Resumo: O Teorema do Ponto Fixo de Banach, formulado e demonstrado pelo matemático polonês Stefan Banach, estabelece condições sob as quais uma função contínua de um espaço métrico completo em si mesmo possui pelo menos um ponto fixo, ou seja, um ponto que não é movido pela função. Este trabalho é dedicado a estudar esse teorema de ponto fixo e a explorar a teoria de espaços métricos necessária ao seu entendimento, destacando a interconexão entre essa teoria, o referido teorema e suas aplicações. Temos também como objetivo apresentar a beleza e a aplicabilidade da teoria de espaços métricos a estudantes de graduação em Matemática e/ou entusiastas da área, além de destacar a relevância do teorema em várias áreas do conhecimento. Três aplicações do Teorema do Ponto Fixo de Banach são abordadas: um problema de existência de solução para uma equação não linear em R, a relação entre o teorema e o buscador do Google e a relação entre o teorema e o processo de compressão de imagens.