Aspectos teórico-numéricos dos métodos SPH e MPS
Ano de defesa: | 2015 |
---|---|
Autor(a) principal: | |
Orientador(a): | |
Banca de defesa: | |
Tipo de documento: | Dissertação |
Tipo de acesso: | Acesso aberto |
Idioma: | por |
Instituição de defesa: |
Universidade Estadual Paulista (Unesp)
|
Programa de Pós-Graduação: |
Não Informado pela instituição
|
Departamento: |
Não Informado pela instituição
|
País: |
Não Informado pela instituição
|
Palavras-chave em Português: | |
Link de acesso: | http://hdl.handle.net/11449/128166 http://www.athena.biblioteca.unesp.br/exlibris/bd/cathedra/16-09-2015/000848940.pdf |
Resumo: | Currently, due to the technological advances the use of particle methods is gaining ground in the simulations of fluid flow. The first particle method to be developed was the Smoothed Particle Hydrodynamics (SPH) that was very efficient for compressible flow problems, but inefficient for incompressible ones. Thus, there was some strategy to solve incompressible flow problems as the incompressible Smoothed Particle Hydrodynamics (ISPH) and the Moving Particle Semi-Implicit (MPS); in both methods the pressure is updated by a Poisson equation. For an approximation of the Navier-Stokes equations it is first needed a good approximation for the Poisson equation. This paper discusses the following particles methods: Smoothed Particle Hydrodynamics (SPH) and Moving Particle Semi-Implicit (MPS). The discretization of differential operators by these methods is done through the approximation of the kernel and also by particles. A comparative study of different discretizations were made. In order to know if the parameters used in the literature for the SPH and MPS methods provide a good solution for Poisson equation, have been performed several tests by varying the parameters with and without the borders treatment. This work also proposed a strategy to solve the oscillation problem in advection equation with discontinuity in the initial conditions and the results were very satisfactory |