Detalhes bibliográficos
Ano de defesa: |
2019 |
Autor(a) principal: |
Andrade, Rita de Cássia Aragão da Silva |
Orientador(a): |
Não Informado pela instituição |
Banca de defesa: |
Não Informado pela instituição |
Tipo de documento: |
Dissertação
|
Tipo de acesso: |
Acesso aberto |
Idioma: |
por |
Instituição de defesa: |
Universidade Estadual Paulista (Unesp)
|
Programa de Pós-Graduação: |
Não Informado pela instituição
|
Departamento: |
Não Informado pela instituição
|
País: |
Não Informado pela instituição
|
Palavras-chave em Português: |
|
Link de acesso: |
http://hdl.handle.net/11449/191557
|
Resumo: |
O controle estatístico de processos (CEP) é um conjunto de ferramentas usadas para monitorar a estabilidade de um processo, no sentido de identificar a ocorrência de causas especiais. Em 1924, Walter Shewhart projetou o primeiro gráfico de controle. Os gráficos de controle podem ser por variáveis ou atributos, sendo o gráfico por variáveis o mais comumente utilizado. Porém, nem sempre é por meio de mensurações que se avalia a qualidade de um produto ou serviço; muitas vezes o fazemos por meio de seus atributos, “defeituoso” ou “não defeituoso”. Nesse contexto, o mais indicado é a utilização do gráfico de controle por atributo. Para muitos dos problemas identificados num produto ou serviço, os dados podem não ser tão precisos. Essa incerteza vem do sistema de medição, dos operadores, das condições ambientais, entre outros. Para lidar com essa incerteza, pode-se usar a lógica fuzzy, pois os gráficos de controle fuzzy fornecem uma avaliação mais flexível. Este trabalho propõe o uso de gráficos de controle fuzzy p e np para monitoramento de processos univariados, considerando os casos TFN e TrFN, número fuzzy triangular e número fuzzy trapezoidal, respectivamente. Os gráficos propostos foram comparados com o gráfico de Shewhart. Os gráficos de controle fuzzy foram construídos usando regras de lógica fuzzy, de forma a ajudar na tomada de decisão. Foi analisado o desempenho do gráfico de controle utilizando NMA – número médio de amostras até alarme falso. Diante dos resultados obtidos, observou-se que gráficos de controle por atributos fuzzy apresentaram maior eficiência que os gráficos de controle de atributos tradicionais. |