Coordenadas vestidas: formulação segundo a interpretação de Dirac-Feynman para a mecânica quântica e aplicações em CQED

Detalhes bibliográficos
Ano de defesa: 2007
Autor(a) principal: Sousa Junior, L. B. de [UNESP]
Orientador(a): Não Informado pela instituição
Banca de defesa: Não Informado pela instituição
Tipo de documento: Dissertação
Tipo de acesso: Acesso aberto
Idioma: por
Instituição de defesa: Universidade Estadual Paulista (Unesp)
Programa de Pós-Graduação: Não Informado pela instituição
Departamento: Não Informado pela instituição
País: Não Informado pela instituição
Palavras-chave em Português:
Link de acesso: http://hdl.handle.net/11449/138372
http://www.athena.biblioteca.unesp.br/exlibris/bd/cathedra/11-04-2016/000855876.pdf
Resumo: In this work, we will study the just-introduced dressed coordinates in the path-integral approach, according to the Dirac-Feynman interpretation of quantum theory. These coordinates are introduced in the model of a harmonic oscillator coupled linearly to a set of normal modes of a massless scalar field, and will allow a non-perturbative and unified description of an atom radiation process in an arbitrarily detuned cavity, generalizing the description according to the Jaynes-Cummings model, largely used in Cavity QED. The dressed coordinates also give a physically acceptable description of the system's vacuum-state stability, without necessity of appealing to the known rotating wave approximation. We will show that, in this model, the dressed coordinates reveal themselves through a nonorthogonal linear coordinate transformation preserving the path-integral functional measure, which makes it possible and simplifies the calculations in this approach. We will also generalize the sum rules strategy, recently introduced to make calculations of transition probabilities easier. Finally, we will see that, in the limiting case of an infinitely large cavity, we recover the well known exponencial rate of spontaneous decay of an atom in free space. On the other hand, for a sufficiently small cavity, the model says the oscillator can remain almost stable in its 1-excited state