Detalhes bibliográficos
Ano de defesa: |
2021 |
Autor(a) principal: |
Freitas, Matheus Lino de |
Orientador(a): |
Não Informado pela instituição |
Banca de defesa: |
Não Informado pela instituição |
Tipo de documento: |
Dissertação
|
Tipo de acesso: |
Acesso aberto |
Idioma: |
por |
Instituição de defesa: |
Universidade Estadual Paulista (Unesp)
|
Programa de Pós-Graduação: |
Não Informado pela instituição
|
Departamento: |
Não Informado pela instituição
|
País: |
Não Informado pela instituição
|
Palavras-chave em Português: |
|
Link de acesso: |
http://hdl.handle.net/11449/215126
|
Resumo: |
Alinhamento múltiplo de sequências é uma das técnicas mais relevantes no contexto de bioinformática. Os sequenciadores modernos produzem um grande volume de dados que são posteriormente analisados por biólogos, biomédicos e profissionais da área genética. Devido a esse grande volume, estratégias computacionais são necessárias para auxiliar na análise dos dados, como por exemplo, os alinhamentos de sequências. A tarefa de alinhar sequências é um desafio computacional e biológico. Do ponto de vista biológico, os modelos são incompletos e não levam em consideração todos os aspectos estruturais e evolutivos das espécies. Além disso, do ponto de vista computacional, com os hardwares atuais, soluções exatas podem não ser obtidas em um tempo hábil. A alternativa prática é a utilização de heurísticas e modelos probabilísticos para se obter resultados com significância biológica, dentro de um tempo factível. Entretanto, heurísticas possuem a característica de se fixarem em pontos de máximo ou mínimo local e, deste modo, as soluções tornam-se sub-ótimas. Para amenizar esse problema recorre-se à utilização de estratégias híbridas e aplicação de estado caótico no algoritmo para deslocar a solução de um ponto no espaço de busca para outro. Portanto, o presente trabalho desenvolveu-se um novo método que, por meio de uma combinação entre as ferramentas KAlign e Clustal Ômega, produz um alinhamento inicial e efetua seu refinamento com otimização por colônia de formigas e chaotic jump. Houve a obtenção de 100% de melhores resultados quando comparados com a ferramenta MSA-GA e pelo menos 50% de melhores resultados quando comparados com as ferramentas KAlign e Clustal Ômega, para todas as famílias do benchmark utilizadas. |