Detalhes bibliográficos
Ano de defesa: |
2016 |
Autor(a) principal: |
Oliveira, Eliézer Fernando de [UNESP] |
Orientador(a): |
Não Informado pela instituição |
Banca de defesa: |
Não Informado pela instituição |
Tipo de documento: |
Tese
|
Tipo de acesso: |
Acesso aberto |
Idioma: |
por |
Instituição de defesa: |
Universidade Estadual Paulista (Unesp)
|
Programa de Pós-Graduação: |
Não Informado pela instituição
|
Departamento: |
Não Informado pela instituição
|
País: |
Não Informado pela instituição
|
Palavras-chave em Português: |
|
Link de acesso: |
http://hdl.handle.net/11449/144995
|
Resumo: |
Materiais orgânicos vêm sendo utilizados em diversos tipos de dispositivos eletrônicos e optoeletrônicos, sendo um dos destaques seu uso em células solares. Atualmente, células solares que utilizam materiais orgânicos na camada ativa já atingem eficiências em torno de 12% na conversão da energia solar em elétrica. Apesar destes materiais apresentarem vantagens em relação ao custo do produto final e processamento comparado aos inorgânicos, a comunidade científica ainda se depara com problemas relacionados às propriedades intrínsecas, como por exemplo, baixa estabilidade à oxidação e energias de bandgap elevadas; deste modo, ainda é viável encontrar novos materiais orgânicos que superem tais problemas. Este trabalho teve como finalidade a busca de novos materiais orgânicos, mais especificamente polímeros conjugados, para aplicações em camada ativa de células solares utilizando métodos teóricos de modelagem de materiais em níveis de teoria semi-empírico e DFT. A primeira parte deste trabalho focou no estudo de novos copolímeros de comonômeros similares e novos homopolímeros derivados de P3HT. Aqui foi possível verificar que, através de substituições químicas realizadas no P3HT, pode-se encontrar novos polímeros com valores mais apropriados para as energias dos orbitais moleculares de fronteira e maiores mobilidades de carga, propriedades que estão intimamente relacionadas à eficiência e à estabilidade que a célula solar pode atingir. Um dos novos polímeros que apresentou potencial para aplicação em camadas ativas de células solares foi o P3HT fluorado, que posteriormente foi confirmado através de trabalhos experimentais. Para os copolímeros de comonômeros similares, verificou-se que as propriedades eletrônicas e ópticas destes materiais apresentam uma dependência linear com as mesmas propriedades e a proporção de monômeros dos homopolímeros que foram utilizados como comonômeros na construção do copolímero; o destaque maior é que através desta relação linear pode-se projetar novos copolímeros de comonômeros similares antes de uma possível síntese. A segunda parte deste trabalho avaliou as metodologias de modelagem de materiais orgânicos baseadas na (TD)DFT que seriam viáveis para a correta descrição teórica das propriedades ópticas. Verificou-se que uma confiável previsão da energia de transição vertical pode ser obtida por meio do funcional M06HF, adicionando um fator de correção de -0,75 eV nas energias obtidas com ele. Em relação à absorção óptica do estado excitado, o funcional B3LYP não prevê corretamente as energias de transição entre os estados excitados, ao passo que resultados mais confiáveis podem ser obtidos com os funcionais BHLYP e CAM-B3LYP comparado aos dados experimentais disponíveis. |