Detalhes bibliográficos
Ano de defesa: |
2003 |
Autor(a) principal: |
Cintra, Evandro Cardoso [UNESP] |
Orientador(a): |
Não Informado pela instituição |
Banca de defesa: |
Não Informado pela instituição |
Tipo de documento: |
Tese
|
Tipo de acesso: |
Acesso aberto |
Idioma: |
por |
Instituição de defesa: |
Universidade Estadual Paulista (Unesp)
|
Programa de Pós-Graduação: |
Não Informado pela instituição
|
Departamento: |
Não Informado pela instituição
|
País: |
Não Informado pela instituição
|
Palavras-chave em Português: |
|
Link de acesso: |
http://hdl.handle.net/11449/103035
|
Resumo: |
Este estudo desenvolve a aplicação da técnica de redes neurais artificiais no controle de teor de minério em frentes de lavra a partir de observações geológicas e geotécnicas. A área de estudo da aplicação é o depósito de cobre e ouro de Chapada (Goiás), hospedado por rochas da seqüência vulcano-sedimentar neoproterozóica de Chapada-Mara Rosa. Trata-se de um depósito mineral tipo epigenético, ligado a processos de alteração hidrotermal, associado a zonas estruturalmente favoráveis. As observações geológicas e geotécnicas constituem um banco de dados com 21.212 registros e 21 variáveis, provenientes de amostras de 237 furos de sondagem rotativa diamantada. As variáveis de entrada incluem litologia, porcentagem de sulfetos, razão calcopirita/pirita, freqüência de fraturas, RQD, e alterações hidrotermais tais como: cloritização, sericitização, silicificação, epidotização, carbonatização e piritização. As variáveis de saída são: teores de cobre e ouro. O modelo de rede neural utilizado foi o de múltiplas camadas (MLP) alimentada adiante ( feedforward ) totalmente interconectada, com 30 neurônios na camada oculta e 2 neurônios na camada de saída. A rede foi treinada com o algoritmo de retropropagação de Levenberg-Marquardt acoplado com regularização bayesiana. Obteve-se um índice de acertos de 80% na predição de teores de cobre em bancadas simuladas. |