Detalhes bibliográficos
Ano de defesa: |
2019 |
Autor(a) principal: |
Favan, João Ricardo |
Orientador(a): |
Não Informado pela instituição |
Banca de defesa: |
Não Informado pela instituição |
Tipo de documento: |
Tese
|
Tipo de acesso: |
Acesso aberto |
Idioma: |
por |
Instituição de defesa: |
Universidade Estadual Paulista (Unesp)
|
Programa de Pós-Graduação: |
Não Informado pela instituição
|
Departamento: |
Não Informado pela instituição
|
País: |
Não Informado pela instituição
|
Palavras-chave em Português: |
|
Link de acesso: |
http://hdl.handle.net/11449/182564
|
Resumo: |
O setor florestal brasileiro e, principalmente, o setor de árvores plantadas tem suma importância para a economia do Brasil. Nessa cadeia produtiva, os viveiros florestais são os responsáveis por fornecer as mudas utilizadas em reflorestamentos, sendo que esses fornecem matéria prima para as indústrias de energia e papel e celulose. Dessa forma, o adequado manejo e a prevenção de doenças nas plantas comercializadas ocupam um lugar de destaque na produção dos viveiros. A Mancha Foliar Bacteriana (MFB) do eucalipto é uma doença preocupante para a produção de mudas de eucalipto, visto que sua incidência, sem o devido tratamento, pode levar a grandes perdas. A reflectância foliar de plantas pode ser um indicador para as respostas a diversos fenômenos biofísicos e bioquímicos em plantas. Este trabalho desenvolveu classificadores baseados em Inteligência Artificial para discriminar a ocorrência da mancha foliar bacteriana, assim como determinar sua severidade e seu período de latência, utilizando imagens digitais e assinaturas espectrais das folhas de eucalipto. Mudas de eucalipto foram inoculadas com uma suspensão de bactérias Xanthomonas spp. e suas assinaturas espectrais e imagens digitais foram coletadas durante oito dias consecutivos. Mudas de eucalipto não inoculados foram utilizados com controle negativo. Os dados coletados foram analisados utilizando técnicas estatísticas e de inteligência artificial, a fim de se obter a severidade da doença, seu período de latência, distinção entre mudas sadias e infectadas. Os modelos computacionais testados apresentaram bons resultados para a discriminação entre plantas doentes e sadias, permitindo a detecção pré sintomática da doença. A severidade da doença mensurada a partir da reflectância foliar espectral foi melhor ajustada pelos modelos estatísticos de regressão linear múltipla. Dessa forma, ferramentas computacionais e estatísticas devem ser usadas conjuntamente para obter os melhores resultados na classificação das doenças e na predição da severidade da doença. |