Detalhes bibliográficos
Ano de defesa: |
2016 |
Autor(a) principal: |
Bravo, Maria Jacqueline Atoche [UNESP] |
Orientador(a): |
Não Informado pela instituição |
Banca de defesa: |
Não Informado pela instituição |
Tipo de documento: |
Dissertação
|
Tipo de acesso: |
Acesso aberto |
Idioma: |
por |
Instituição de defesa: |
Universidade Estadual Paulista (Unesp)
|
Programa de Pós-Graduação: |
Não Informado pela instituição
|
Departamento: |
Não Informado pela instituição
|
País: |
Não Informado pela instituição
|
Palavras-chave em Português: |
|
Link de acesso: |
http://hdl.handle.net/11449/138320
|
Resumo: |
No presente trabalho, apresenta-se uma revisão sobre os principais abordagens para análise e classificação de texturas, entre eles o descritor LBP (Local Binary Pattern), o descritor LFP (Local Fuzzy Patterm) e o descritor MSLMP (Multi-scale Local Mapped Pattern), o qual é uma extensão multiescalar do descritor LMP (Local Mapped Pattern). Resultados anteriores presentes na literatura, indicaram que o MSLMP conseguiu resultados superiores aos mencionados anteriormente. Neste trabalho propõe-se uma análise mais abrangente sobre sua viabilidade para concluir que o MSLMP é mais eficaz que os anteriores. Essa análise é feita alterando-se a Matriz de Pesos para os pixels limiarizados. Para avaliar seu desempenho, foi utilizada a base de texturas do Album de Brodatz. Após processá-la pelo descritor MSLMP, com cada uma das matrizes de Pesos propostas neste trabalho, foram comparadas as taxas de acertos alcançadas usando a distância Chi-quadrado. Resultados experimentais mostram um valor de sensibilidade melhor para o descritor MSLMP em comparação aos outros descritores presentes na literatura. |