Análise do descritor de padrões mapeados localmente em multiescala para classificação de textura em imagens digitais

Detalhes bibliográficos
Ano de defesa: 2016
Autor(a) principal: Bravo, Maria Jacqueline Atoche [UNESP]
Orientador(a): Não Informado pela instituição
Banca de defesa: Não Informado pela instituição
Tipo de documento: Dissertação
Tipo de acesso: Acesso aberto
Idioma: por
Instituição de defesa: Universidade Estadual Paulista (Unesp)
Programa de Pós-Graduação: Não Informado pela instituição
Departamento: Não Informado pela instituição
País: Não Informado pela instituição
Palavras-chave em Português:
Link de acesso: http://hdl.handle.net/11449/138320
Resumo: No presente trabalho, apresenta-se uma revisão sobre os principais abordagens para análise e classificação de texturas, entre eles o descritor LBP (Local Binary Pattern), o descritor LFP (Local Fuzzy Patterm) e o descritor MSLMP (Multi-scale Local Mapped Pattern), o qual é uma extensão multiescalar do descritor LMP (Local Mapped Pattern). Resultados anteriores presentes na literatura, indicaram que o MSLMP conseguiu resultados superiores aos mencionados anteriormente. Neste trabalho propõe-se uma análise mais abrangente sobre sua viabilidade para concluir que o MSLMP é mais eficaz que os anteriores. Essa análise é feita alterando-se a Matriz de Pesos para os pixels limiarizados. Para avaliar seu desempenho, foi utilizada a base de texturas do Album de Brodatz. Após processá-la pelo descritor MSLMP, com cada uma das matrizes de Pesos propostas neste trabalho, foram comparadas as taxas de acertos alcançadas usando a distância Chi-quadrado. Resultados experimentais mostram um valor de sensibilidade melhor para o descritor MSLMP em comparação aos outros descritores presentes na literatura.