Detalhes bibliográficos
Ano de defesa: |
2019 |
Autor(a) principal: |
Algozini Junior, Airton |
Orientador(a): |
Não Informado pela instituição |
Banca de defesa: |
Não Informado pela instituição |
Tipo de documento: |
Dissertação
|
Tipo de acesso: |
Acesso aberto |
Idioma: |
por |
Instituição de defesa: |
Universidade Estadual Paulista (Unesp)
|
Programa de Pós-Graduação: |
Não Informado pela instituição
|
Departamento: |
Não Informado pela instituição
|
País: |
Não Informado pela instituição
|
Palavras-chave em Português: |
|
Link de acesso: |
http://hdl.handle.net/11449/183646
|
Resumo: |
Neste trabalho foram resolvidos, através da Equação de Schrödinger Independente do tempo, o potencial biestável para um sistema de dois níveis do Poço Duplo Quadrado Unidimensional Simétrico, de forma exata e por métodos aproximativos. Também é apresentada a solução da equação radial para o potencial coulombiano usando um formalismo de operadores escada, através dos conceitos de supersimetria em mecânica quântica e shape invariance. O tunelamento em um potencial biestável é proporcional à diferença entre os dois níveis de energia mais baixos. O presente estudo mostra os resultados dessa diferença obtida para três abordagens distintas para o poço quadrado biestável analisado. Os primeiros resultados são obtidos por uma solução analítica para a Equação de Schrödinger Independente do tempo. Uma combinação linear das autofunções do estado fundamental dos poços individuais é usada também é usada, juntamente com o método variacional em uma segunda abordagem. Outra abordagem usada é a aproximação WKB. A solução radial do problema coulombiano quântico é determinada de forma exata/analítica através dos operadores de criação e destruição. |