Strategies to improve the conversion of sugarcane bagasse into second generation ethanol

Detalhes bibliográficos
Ano de defesa: 2021
Autor(a) principal: Igbojionu, Longinus Ifeanyi
Orientador(a): Não Informado pela instituição
Banca de defesa: Não Informado pela instituição
Tipo de documento: Tese
Tipo de acesso: Acesso aberto
Idioma: eng
Instituição de defesa: Universidade Estadual Paulista (Unesp)
Programa de Pós-Graduação: Não Informado pela instituição
Departamento: Não Informado pela instituição
País: Não Informado pela instituição
Palavras-chave em Português:
Link de acesso: http://hdl.handle.net/11449/204708
Resumo: O etanol de segunda geração a partir da biomassa lignocelulósica é uma solução renovável e sustentável para os problemas ambientais decorrentes das grandes demandas de energia da sociedade moderna. Bagaço de cana-de-açúcar (SB), uma lignocelulose composta por dois grandes polímeros de açúcar (celulose e hemiceluloses) ligados à lignina. Devido à natureza recalcitrante do SB, o pré-tratamento é considerado uma etapa fundamental do processo antes de ser convertido em biomoléculas. SB bruto consiste em celulose (40,4% em peso), hemicelulose (23,8% em peso), lignina (27,2% em peso), cinzas (3,0% em peso) e extrativos (4,4% em peso). O pré-tratamento de SB com NaOH a 3% e NaOH a 8% em autoclave (121 oC) e à temperatura ambiente, respectivamente, levou a aumentos nas frações celulósicas (aproximadamente 62,0% em peso), enquanto o conteúdo de lignina diminuiu para valores inferiores a 11,0% em peso. O NaOH sequencial em duas etapas e o pré-tratamento com ácido resultaram em aumentos substanciais nas frações celulósicas (aproximadamente 80,0% em peso), que foi cerca de duas vezes o valor obtido a partir de SB não tratado (40,4% em peso). O conteúdo de hemicelulose de SB diminuiu substancialmente após o pré-tratamento da segunda etapa com ácido (ácido maleico e sulfúrico). No entanto, o índice de cristalinidade aumentou substancialmente após diferentes pré-tratamentos foram aplicados ao SB. A sacarificação enzimática do SB pré-tratado levou a rendimentos de glicose acima de 75% (g/g) em comparação com 27% (g/g) obtidos do SB não tratado após 72 h. A otimização da hidrólise enzimática resultou em rendimento máximo de glicose de 85,9% (g/g) pela aplicação de 1,8 FPU/g de celulose de celulose, 5,3% de carregamento de sólidos e 48 h de tempo de hidrólise. Por outro lado, a hidrólise ácida em duas etapas do SB pré-tratado resultou em um rendimento máximo de glicose de 56,8% (g/g). A otimização da hidrólise ácida em duas etapas aplicando ácido sulfúrico a 1,5%, FeSO4 40,0 mmol/L e 120 min na segunda etapa de hidrólise resultou em um rendimento máximo de glicose de 90,0% (g/g) e um valor de rendimento de glicose previsto de 88,9%. Após a validação, os valores experimentais e preditos de rendimento de glicose foram de 88,6% e 86,5%, respectivamente. Além disso, os hidrolisados ácidos obtidos continham baixa quantidade de compostos inibidores (furfural e 5-hidroximetilfurfural). Tanto o ácido quanto o hidrolisado enzimático foram eficientemente utilizados por Saccharomyces cerevisiae IQAr/45-1 para atingir rendimentos de etanol de 0,43 g/g e 0,46 g/g, respectivamente. No entanto, quantidades consideráveis de açúcar residual permaneceram no final da fermentação, indicando a incapacidade de S. cerevisiae IQAr/45-1 em metabolizar o açúcar pentose presente nos hidrolisados. Assim, o uso de levedura geneticamente modificada com a capacidade de utilizar simultaneamente os açúcares hexose e pentose melhorará ainda mais o processo de fermentação. Em conclusão, os processos que envolveram o uso de reagentes químicos baratos para superar a recalcitrância de SB e liberar açúcares fermentáveis poderiam potencialmente apoiar uma biorrefinaria e reduzir significativamente o custo do etanol de segunda geração.