Diagnóstico automático de falhas em grupos geradores hidroelétricos utilizando técnicas preditivas de manutenção e redes neurais artificiais

Detalhes bibliográficos
Ano de defesa: 2008
Autor(a) principal: Almeida, Fabrício César Lobato de [UNESP]
Orientador(a): Não Informado pela instituição
Banca de defesa: Não Informado pela instituição
Tipo de documento: Dissertação
Tipo de acesso: Acesso aberto
Idioma: por
Instituição de defesa: Universidade Estadual Paulista (Unesp)
Programa de Pós-Graduação: Não Informado pela instituição
Departamento: Não Informado pela instituição
País: Não Informado pela instituição
Palavras-chave em Português:
Link de acesso: http://hdl.handle.net/11449/94565
Resumo: Neste trabalho se apresenta uma técnica de redução de dados para monitoração e diagnóstico automático de grupos geradores hidroelétricos com base na análise de vibrações, utilizando redes neurais artificiais. Os sinais de vibração são processados numericamente para se obter um espectro normalizado com no máximo doze freqüências, especialmente determinadas para cada máquina em particular, de tal forma a torná-lo representativo da condição da máquina. A definição das bandas de freqüência a serem usadas no processamento desse espectro especial é feita para cada equipamento a ser monitorado com auxílio de um ambiente computacional desenvolvido e apresentado neste trabalho. Um programa protótipo de monitoração baseado nestas técnicas foi desenvolvido e é apresentado com uso de exemplos de aplicação.