Detecção de falhas em rolamentos de máquinas rotativas utilizando técnicas de processamentos de sinais

Detalhes bibliográficos
Ano de defesa: 2017
Autor(a) principal: Santos, Rodolfo de Sousa [UNESP]
Orientador(a): Não Informado pela instituição
Banca de defesa: Não Informado pela instituição
Tipo de documento: Tese
Tipo de acesso: Acesso aberto
Idioma: por
Instituição de defesa: Universidade Estadual Paulista (Unesp)
Programa de Pós-Graduação: Não Informado pela instituição
Departamento: Não Informado pela instituição
País: Não Informado pela instituição
Palavras-chave em Português:
Link de acesso: http://hdl.handle.net/11449/151409
Resumo: Os sinais de vibrações de máquinas rotativas conduzem a informações dinâmicas da máquina e esta análise é de grande importância no que diz respeito ao monitoramento de condição e diagnósticos de máquinas. Vários métodos de análises têm sido empregados no sentido de diagnosticar falhas em componentes de máquinas tais como engrenagens, rolamentos, dentre outros. Este trabalho apresenta uma análise sobre detecção de falhas em rolamentos de máquinas rotativas, e para esta apreciação utilizou-se os bancos de dados da CASE WESTERN RESERV UNIVERSITY e o banco de dados da FEG/UNESP. O objetivo principal deste trabalho foi a implementação de técnicas avançadas para identificar e caracterizar as falhas que são geradas em rolamentos, vislumbrando o aprimoramento da manutenção baseada na condição. Inicialmente, realizou-se a implementação e simulação no banco de dados da (CWRU), utilizando o software MATLAB e por meio da técnica de ressonância de alta frequência (HFRT), obteve-se resultados satisfatórios, entretanto esta metodologia é limitada uma vez que ela é empregada apenas para regime estacionário. A implementação da técnica HFRT não identificou em alguns casos a frequências para caracterização dos defeitos nas pistas dos rolamentos. Em seguida, utilizou-se a técnica Short Time Fourier Transform-STFT. A implementação proporcionou uma análise bem mais sensível aos impactos gerados nas pistas, pois, com a utilização da STFT, foi possível identificar as frequências características de defeitos. Para efeito de comparação optou-se por utilizar a técnica Wavelet combinada com a técnica do envelope. Esta análise foi aplicada usando a Wavelet Daubechies de ordem 4 (db4), em cuja implementação, realizou-se a decomposição do sinal de um rolamento com defeito e verificou-se qual destes apresentou o maior nível RMS e selecionou-se este sinal, pois o mesmo é o nível ideal para aplicação do método. Realizou-se a mesma apreciação ao banco de dados da FEG/UNESP. A análise realizada da técnica de Wavelet combinada com a técnica HFRT foi a que demonstrou melhor capacidade em relação às técnicas HFRT e STFT. Em seguida realizou-se a implementação da técnica de curtose espectral associada à técnica do envelope foi a que proporcionou os resultados mais precisos e satisfatórios, pois com a aplicação dessa metodologia foi possível a determinação de forma automática da região de ressonância e consequentemente uma melhora na caracterização das frequências de defeitos observadas nos rolamentos dos experimentos realizados em máquinas rotativas.