Aplicação de redes neurais artificiais na predição de diâmetro e rugosidade durante o processo de furação

Detalhes bibliográficos
Ano de defesa: 2012
Autor(a) principal: Contrucci, João Gabriel [UNESP]
Orientador(a): Não Informado pela instituição
Banca de defesa: Não Informado pela instituição
Tipo de documento: Dissertação
Tipo de acesso: Acesso aberto
Idioma: por
Instituição de defesa: Universidade Estadual Paulista (Unesp)
Programa de Pós-Graduação: Não Informado pela instituição
Departamento: Não Informado pela instituição
País: Não Informado pela instituição
Palavras-chave em Português:
Link de acesso: http://hdl.handle.net/11449/87194
Resumo: O mercado, de maneira geral, vem exigindo níveis de quantidade cada vez maiores e redução de custos operacionais. Dentro desse contexto, as indústrias buscam processos mais automatizados e robustos, visando padronização nas operações e redução dos desperdícios. O controle eficaz o processo de fabricação é chave para atender às crescentes exigências do mercado. A utilização de redes neurais artificiais para o controle de processos complexos, com inúmeras variáveis, é um método que vem ganhando destaque acadêmico ao longo dos anos. O processo de furação para instalação de prendedores em estruturas aeronáuticas é um processo especial, no qual são exigidos controle rigorosos de qualidade devido aos requisitos de projeto, sendo, em muitos casos, mais importante a qualidade da furação, do que a vida útil da ferramenta. Este trabalho tem por objetivo apresentar um método para predição de diâmetros médicos e rugosidade de furos realizados durante o processo de furação de ligas aeronáuticas por meio de brocas helicoidais. Com a utilização de um sistema multi sensores acoplados a uma fresadora extrairam-se sinais, potência do motor elétrico, emissão acústica, vibração e forças de usinagem que alimentaram uma primeira rede neural artificial feedforward que teve a função de estimar a rugosidade e o diâmetro médio do furo. Uma vez de posse do valor estimado, ele servia de entrada em uma segunda rede neural time delay - TDNN que atuou na predição da rugosidade e diâmetro médio do próximo furo a ser realizado, mesmo antes de esse ser realizado mecanicamente. Posteriormente, buscou-se o mesmo procedimento previamente descrito, porém utilizando apenas apenas os sinais de potência e força no eixo Z como entrada da rede neural de estimação. Todos os valores preditos apresentaram erros pequenos...