Detalhes bibliográficos
Ano de defesa: |
2020 |
Autor(a) principal: |
Rodríguez, Elen Yanina Aguirre |
Orientador(a): |
Não Informado pela instituição |
Banca de defesa: |
Não Informado pela instituição |
Tipo de documento: |
Dissertação
|
Tipo de acesso: |
Acesso aberto |
Idioma: |
por |
Instituição de defesa: |
Universidade Estadual Paulista (Unesp)
|
Programa de Pós-Graduação: |
Não Informado pela instituição
|
Departamento: |
Não Informado pela instituição
|
País: |
Não Informado pela instituição
|
Palavras-chave em Português: |
|
Link de acesso: |
http://hdl.handle.net/11449/192326
|
Resumo: |
Em diferentes aspectos da vida cotidiana, o ser humano é forçado a escolher entre várias opções, esse processo é conhecido como tomada de decisão. No nível do negócio, a tomada de decisões desempenha um papel muito importante, porque dessas decisões depende o sucesso ou o fracasso das organizações. No entanto, em muitos casos, tomar decisões erradas pode gerar grandes custos. Desta forma, alguns dos problemas de tomada de decisão que um gerente enfrenta comumente são, por exemplo, a decisão para determinar um preço, a decisão de comprar ou fabricar, em problemas de logística, problemas de armazenamento, etc. Por outro lado, a coleta de dados tornou-se uma vantagem competitiva, pois pode ser utilizada para análise e extração de resultados significativos por meio da aplicação de diversas técnicas, como estatística, simulação, matemática, econometria e técnicas atuais, como aprendizagem de máquina para a criação de modelos preditivos. Além disso, há evidências na literatura de que a criação de modelos com técnicas de aprendizagem de máquina têm um impacto positivo na indústria e em diferentes áreas de pesquisa. Nesse contexto, o presente trabalho propõe o desenvolvimento de um modelo preditivo para tomada de decisão, usando as técnicas supervisionadas de aprendizado de máquina, e combinando o modelo gerado com as restrições pertencentes ao processo de otimização. O objetivo da proposta é treinar um modelo matemático com dados históricos de um processo decisório e obter os preditores compostos por funções empíricas que serão posteriormente utilizadas e modeladas de acordo com as restrições do problema. Assim, este trabalho pode ser classificado como uma pesquisa aplicada, com objetivos empíricos descritivos e experiência prática que explicarão o modelo e suas vantagens. A maneira de abordar o problema deste trabalho será quantitativa, sendo os procedimentos técnicos de modelagem e simulação. A sistemática proposta é validada aplicando-se a um problema real em uma empresa multinacional brasileira do segmento de autopeças, situado no Vale do Paraíba-SP. O conjunto de dados vem do processo de transporte, visando aplicar a sistemática e criar um modelo matemático para prever o custo de transporte de uma quantidade de itens para um destino específico, de modo que este modelo finalmente ajuda a reduzir os tempos de estimativa e tomar melhores decisões. Finalmente, para a criação do modelo preditivo, foram testadas as técnicas de aprendizagem supervisionada de regressão linear, árvore de decisão CART, árvore de modelo M5P, máquina de vetor de suporte e redes neurais. Todos os modelos gerados foram avaliados por as métricas estatísticas de desempenho do erro médio absoluto, raiz do erro quadrático médio, erro absoluto relativo, erro quadrático relativo, coeficiente de correlação e coeficiente de determinação ou também conhecido como R2. Sendo que, o modelo M5P obteve os menores valores nas métricas de erro e os maiores valores na correlação e R2, mostrando ser um modelo eficiente, além de fornecer as equações necessárias para o processo de otimização. |