Detalhes bibliográficos
Ano de defesa: |
2013 |
Autor(a) principal: |
Ichiba, Fernando Tochio [UNESP] |
Orientador(a): |
Não Informado pela instituição |
Banca de defesa: |
Não Informado pela instituição |
Tipo de documento: |
Dissertação
|
Tipo de acesso: |
Acesso aberto |
Idioma: |
por |
Instituição de defesa: |
Universidade Estadual Paulista (Unesp)
|
Programa de Pós-Graduação: |
Não Informado pela instituição
|
Departamento: |
Não Informado pela instituição
|
País: |
Não Informado pela instituição
|
Palavras-chave em Português: |
|
Link de acesso: |
http://hdl.handle.net/11449/98673
|
Resumo: |
As pesquisas acerca de spatial data mining - ou prospecção de dados espaciais - tem avançado no sentido de melhorar a qualidade dos resultados obtidos pelos algoritmos da área e aprimorar as técnicas utilizadas, na tentativa de apresentar soluções que contornam os principais problemas e desafios: custo computacional elevado e baixa eficiência dos algoritmos. Neste trabalho, é apresentado um algoritmo desenvolvido para prospecção de dados espaciais, que introduz uma abordagem multirrelacional para suportar o agrupamento de dados por similaridade de características espaciais e não espaciais com possibilidade de agregação semântica nessa tarefa. Aplicável a bases de dados volumosas, o algoritmo desenvolvido apresentou resultados com qualidade superior nos experimentos realizados, se comparado com alguns dos mais tradicionais de spatial data mining, sem que houvesse perda semântica no levantamento das informações - muitas vezes ocasionada pelas junções de dados exigidas na aplicação de algoritmos tradicionais - e com um desempenho otimizado por meio do uso de multithreading |