Detalhes bibliográficos
Ano de defesa: |
2004 |
Autor(a) principal: |
Alves, Daniele Barroca Marra [UNESP] |
Orientador(a): |
Não Informado pela instituição |
Banca de defesa: |
Não Informado pela instituição |
Tipo de documento: |
Dissertação
|
Tipo de acesso: |
Acesso aberto |
Idioma: |
por |
Instituição de defesa: |
Universidade Estadual Paulista (Unesp)
|
Programa de Pós-Graduação: |
Não Informado pela instituição
|
Departamento: |
Não Informado pela instituição
|
País: |
Não Informado pela instituição
|
Palavras-chave em Português: |
|
Link de acesso: |
http://hdl.handle.net/11449/88541
|
Resumo: |
O Global Navigation Satellite System (GNSS), que congrega os vários sistemas de posicionamento por satélite existentes, tem como principal objetivo viabilizar o posicionamento de baixa, média e alta precisão. Dentre os sistemas de posicionamento que integram o GNSS, o Global Positioning System (GPS) tem grande destaque. Mas as observáveis GPS, tal como todas as outras observáveis envolvidas nos processos de medidas, estão sujeitas a erros aleatórios, sistemáticos e grosseiros. Os erros aleatórios são inevitáveis, sendo, portanto, considerados uma propriedade inerente das observações. Erros grosseiros (outliers) devem ser eliminados através do processo de controle de qualidade. Erros sistemáticos podem ser parametrizados ou eliminados por técnicas apropriadas de observação. Eles degradam a acurácia do posicionamento realizado com o GPS. Esses erros incluem erros da órbita dos satélites GPS, multicaminho, erros de refração atmosférica, dentre outros. Dessa forma, alguns trabalhos recentes têm utilizado o modelo semiparamétrico e o método dos mínimos quadrados com penalidades (MMQ com penalidades) para atenuar os efeitos desses erros residuais, utilizando dados de receptores de monofrequência. No modelo semiparamétrico as variáveis estimadas são divididas em uma parte paramétrica (coordenadas da estação e ambigüidades), que é de interesse do usuário, e uma parte não-paramétrica (funções de erros que variam suavemente com o tempo). Assim, devido ao número de incógnitas ser maior que o usual, é utilizado o MMQ com penalidades. Essa técnica utiliza uma spline cúbica natural, cuja suavidade é determinada pelo parâmetro suavizador, calculado pela validação cruzada generalizada. Nesse método, os erros são modelados como funções que variam suavemente com o tempo... |