Detalhes bibliográficos
Ano de defesa: |
2022 |
Autor(a) principal: |
Luz, Andréa Eliza de Oliveira |
Orientador(a): |
Não Informado pela instituição |
Banca de defesa: |
Não Informado pela instituição |
Tipo de documento: |
Dissertação
|
Tipo de acesso: |
Acesso aberto |
Idioma: |
por |
Instituição de defesa: |
Universidade Estadual Paulista (Unesp)
|
Programa de Pós-Graduação: |
Não Informado pela instituição
|
Departamento: |
Não Informado pela instituição
|
País: |
Não Informado pela instituição
|
Palavras-chave em Português: |
|
Link de acesso: |
http://hdl.handle.net/11449/217957
|
Resumo: |
Como consequência da combinação de extremos climáticos e das ações humanas, destaca-se nos anos recentes a ocorrência de desastres naturais decorrentes de queimadas em áreas florestais. Tais eventos têm sido observados com mais frequência e de forma generalizada, ocasionando graves danos ambientais e sociais em diversos ecossistemas. Estudos apontam para a necessidade de métodos para o monitoramento de queimadas, os quais podem ser realizados através do mapeamento de áreas afetadas ou suscetíveis a tal evento. Neste contexto, dados extraídos de séries multitemporais de imagens obtidas por sensoriamento remoto e técnicas de aprendizado de máquina são componentes potenciais no desenvolvimento de métodos e ferramentas para esse fim. Nesta pesquisa foram desenvolvidos dois métodos através do emprego de conceitos de modelagem, classificação estatística e detecção de anomalias. O primeiro método é capaz de proporcionar o mapeamento das ocorrências através da precisão da identificação das áreas afetadas por fogo, enquanto o segundo realiza o mapeamento da suscetibilidade ao fogo através da identificação de localizações não anômalas. |