Detalhes bibliográficos
Ano de defesa: |
2020 |
Autor(a) principal: |
Costa, Richard Silva |
Orientador(a): |
Não Informado pela instituição |
Banca de defesa: |
Não Informado pela instituição |
Tipo de documento: |
Dissertação
|
Tipo de acesso: |
Acesso aberto |
Idioma: |
por |
Instituição de defesa: |
Universidade Estadual Paulista (Unesp)
|
Programa de Pós-Graduação: |
Não Informado pela instituição
|
Departamento: |
Não Informado pela instituição
|
País: |
Não Informado pela instituição
|
Palavras-chave em Português: |
|
Link de acesso: |
http://hdl.handle.net/11449/192695
|
Resumo: |
Efeitos térmicos em teoria de campos são estudados pela chamada Teoria de Campos a Temperatura Finita. Nessa dissertação estudamos os efeitos de temperatura de um campo fermiônico de dimensão de massa um (MDO), que obedece à equação Klein-Gordon em vez da de Dirac. A função de partição foi obtida por meio do formalismo de tempo imaginário e o resultado foi o mesmo que o obtido para campos fermiônicos padrões de Dirac. Obtemos os limites de alta e baixa temperatura, sendo que o limite de baixas temperaturas é proposto como sendo o responsável por manter os halos de matéria escura da galáxia numa região da mesma ordem ou maior que o raio galáctico. Para uma partícula leve com massa de 1eV e densidade de 0.1 partículas por cm³, o valor da massa total da matéria escura devido a partículas MDO é da mesma ordem da massa de uma galáxia típica. Tal resultado pode explicar a matéria escura como sendo formada por partículas fermiônicas de dimensão de massa um. Por fim, comparamos as estimativas de densidade dessas partículas com densidades obtidas através de dados de simulações numéricas e concluímos que para valores de massa entre 0.1eV a 1eV, as partículas MDO produzem uma massa típica de galáxias desde que a densidade delas esteja no intervalo de 10^(-2) cm^(-3) a 10^(5)cm^(-3). |