Otimização de redes neurais artificiais de múltiplas camadas utilizando algoritmos genéticos e enxame de partículas

Detalhes bibliográficos
Ano de defesa: 2017
Autor(a) principal: Dantas, Leonardo Camilo
Orientador(a): Não Informado pela instituição
Banca de defesa: Não Informado pela instituição
Tipo de documento: Dissertação
Tipo de acesso: Acesso aberto
Idioma: por
Instituição de defesa: Universidade Estadual Paulista (Unesp)
Programa de Pós-Graduação: Não Informado pela instituição
Departamento: Não Informado pela instituição
País: Não Informado pela instituição
Palavras-chave em Português:
MLP
Link de acesso: http://hdl.handle.net/11449/194489
Resumo: As pesquisas na área de Redes Neurais Artificiais são caracterizadas pelo desenvolvimento de algoritmos inspirados no funcionamento do sistema nervoso que apresentam diversas aplicações, como classificação de dados. Porém, seu funcionamento depende de um processo de treinamento que, em alguns casos, pode consumir tempo e ter um custo elevado. Este trabalho apresenta uma proposta de técnica de otimização para Redes do tipo MultiLayer Perceptron (MLP), integrando os benefícios de duas categorias de algoritmos de otimização: Algoritmos Genéticos (AG) e Otimização por Enxame de Partículas (PSO – Particle Swarm Optimization). Tal técnica será utilizada para realizar a otimização simultânea da arquitetura e de seus pesos sinápticos, com o objetivo de buscar redes com boas arquiteturas, isto é, com o mínimo de neurônios e com um bom desempenho para cada problema, tudo de forma automática. E, assim, diminuir custos e tempo para a utilização das MLPs. Os resultados mostram que as redes otimizadas segundo o modelo proposto foram eficientes, pois geraram redes MLPs com boas acurácias e, simultaneamente, com boas arquiteturas.