Critérios compostos para delineamentos ótimos robustos

Detalhes bibliográficos
Ano de defesa: 2014
Autor(a) principal: Silva Marcelo Andrade da [UNESP]
Orientador(a): Não Informado pela instituição
Banca de defesa: Não Informado pela instituição
Tipo de documento: Dissertação
Tipo de acesso: Acesso aberto
Idioma: por
Instituição de defesa: Universidade Estadual Paulista (Unesp)
Programa de Pós-Graduação: Não Informado pela instituição
Departamento: Não Informado pela instituição
País: Não Informado pela instituição
Palavras-chave em Português:
Link de acesso: http://hdl.handle.net/11449/110368
Resumo: In this work we propose the use of a robustness measure to missing data to construct designs for factorial experiments. The robustness property is denoted the H criterion and it is added to a compound design criterion expression. Two versions of the modified exchange algorithm of Fedorov (1972) were implemented computationally for the search of exact optimum designs. Four examples are presented, examples 1, 3 and 4 consider the full second-order model and example 2 considers second-order model excluding the quadratic effects. The examples 1 and 3, in order to preserve good efficiency with respect to other properties, their H efficiency is not high. The results for example 2 showed good performance of the new compound criterion since it produced designs high by efficient for all other properties. In general, the new compound criterion produced more attractive designs than the DP criterion of Gilmour & Trinca (2012) since their leverages were more homogeneous and thus, the designs were more robust to missing data. The designs were also more attractive than those constructed by subsets as in Ahmad & Gilmour (2010)