Detalhes bibliográficos
Ano de defesa: |
2010 |
Autor(a) principal: |
Trujillo, Joel David Melo [UNESP] |
Orientador(a): |
Não Informado pela instituição |
Banca de defesa: |
Não Informado pela instituição |
Tipo de documento: |
Dissertação
|
Tipo de acesso: |
Acesso aberto |
Idioma: |
por |
Instituição de defesa: |
Universidade Estadual Paulista (Unesp)
|
Programa de Pós-Graduação: |
Não Informado pela instituição
|
Departamento: |
Não Informado pela instituição
|
País: |
Não Informado pela instituição
|
Palavras-chave em Português: |
|
Link de acesso: |
http://hdl.handle.net/11449/87085
|
Resumo: |
Neste trabalho apresentam-se dois métodos para serem aplicados na previsão espacial de demanda elétrica, os quais simulam as influências de cargas especiais nas vizinhanças e utilizam os sistemas multiagentes para caracterizar a área de serviço, mostrando assim, a dinâmica dos grupos sociais em uma cidade à procura dos recursos necessários para suas atividades. O primeiro sistema multiagente foi desenvolvido para obter a previsão espacial de demanda elétrica de toda área de serviço e o segundo sistema multiagente modela a influência de cargas especiais nas vizinhanças. Estes sistemas apresentam um caráter estocástico, para simular a estocasticidade dos usuários nos sistemas de distribuição. Os métodos apresentados consideram a disponibilidade atual de dados nas empresas do setor, usando só o banco de dados comercial da empresa de serviço elétrico e o conjunto de dados georreferenciados dos elementos da rede. Uma das contribuições deste trabalho é de utilizar um número real para representar a demanda elétrica esperada de cada subárea fornecendo, deste modo, um melhor dado de entrada para realizar o planejamento de expansão da rede elétrica. A metodologia proposta foi testada em um sistema real de uma cidade de médio porte. Como resultados são gerados mapas de cenários futuros de previsão espacial de demanda para a área de estudo, que mostram a localização espaço-temporal das novas cargas. Cada mapa mostra as subáreas onde a nova demanda é esperada, com um número real para o valor da quantidade desta demanda. Os resultados obtidos variam entre 5 a 10 % em diferentes simulações, quando comparadas com as fornecidas pelo departamento de planejamento da empresa elétrica que aplica uma metodologia manual, que utiliza o conhecimento e as decisões do planejador para determinar o crescimento da demanda. |