Detalhes bibliográficos
Ano de defesa: |
2013 |
Autor(a) principal: |
Santos Junior, Carlos Roberto dos [UNESP] |
Orientador(a): |
Não Informado pela instituição |
Banca de defesa: |
Não Informado pela instituição |
Tipo de documento: |
Dissertação
|
Tipo de acesso: |
Acesso aberto |
Idioma: |
por |
Instituição de defesa: |
Universidade Estadual Paulista (Unesp)
|
Programa de Pós-Graduação: |
Não Informado pela instituição
|
Departamento: |
Não Informado pela instituição
|
País: |
Não Informado pela instituição
|
Palavras-chave em Português: |
|
Link de acesso: |
http://hdl.handle.net/11449/87167
|
Resumo: |
O problema de mensagens não solicitadas pelos usuários em meios de comunicação eletrônica, apesar de ter surgido antes mesmo da popularização da Internet, ainda é um assunto preocupante. Desperdício de largura de banda, perda de tempo, de produtividade e de dados, ou atraso na leitura de e-mails legítimos, são alguns dos problemas que as mensagens não solicitadas, ou Spams, podem causar. Diversas técnicas de filtragem automática de e-mails são apresentadas na literatura, porém muitas destas não oferecem a possibilidade de adaptação, já que o problema em sistemas reais tem como um de seus principais aspectos ser dinâmico, ou seja, mudar constantemente de características com intuito de evadir as técnicas de filtragem. Neste trabalho é desenvolvido um filtro anti-spam utilizando uma técnica de préprocessamento disponível na literatura, no qual os e-mails são submetidos à extração e seleção de características; e uma Rede Neural Artificial baseada na Teoria da Ressonância Adaptativa, para detecção e classificação de Spams. Tais redes neurais possuem grande capacidade de generalização e adaptabilidade, características importantes para um bom desempenho de filtros anti-spam. O modelo proposto neste trabalho é testado a fim de se validar a eficiência do filtro. |