Soluções solitônicas por aproximantes de Padé via método iterativo de Taylor

Detalhes bibliográficos
Ano de defesa: 2018
Autor(a) principal: Biazotti, Herbert Antonio
Orientador(a): Não Informado pela instituição
Banca de defesa: Não Informado pela instituição
Tipo de documento: Dissertação
Tipo de acesso: Acesso aberto
Idioma: por
Instituição de defesa: Universidade Estadual Paulista (Unesp)
Programa de Pós-Graduação: Não Informado pela instituição
Departamento: Não Informado pela instituição
País: Não Informado pela instituição
Palavras-chave em Português:
Link de acesso: http://hdl.handle.net/11449/157328
Resumo: Certos sistemas físicos podem ser descritos por uma classe de equações não-lineares. Essas equações descrevem pacotes de onda chamado de sólitons que tem aplicações em diversas áreas, por exemplo, Óptica, Cosmologia, Matéria Condensada e Física de Partículas. Alguns métodos foram desenvolvidos ao longo dos anos para encontrar as soluções dessas equações. Buscaremos essas soluções usando o que chamamos de Método Iterativo de Taylor (MIT), que fornece uma solução aproximada em polinômio de Taylor de forma distinta do que se tem na literatura. Usaremos o MIT para calcular soluções por aproximantes de Padé que são razões entre dois polinômios e fornecem soluções melhores que o polinômio de Taylor que o gerou. Inicialmente resolveremos a equação de um modelo de um campo denominado λφ4 . Em seguida resolveremos um modelo com dois campos escalares acoplados e encontraremos uma solução analítica aproximada em casos onde não existe solução analítica, explorando a diversidade das soluções do modelo. Usando essa abordagem por aproximantes de Padé veremos que há algumas vantagens em relação a outros métodos.