Caos e termalização na teoria de Yang-Mills com quebra espontânea de simetria

Detalhes bibliográficos
Ano de defesa: 2011
Autor(a) principal: Woitek Junior, Marcio [UNESP]
Orientador(a): Não Informado pela instituição
Banca de defesa: Não Informado pela instituição
Tipo de documento: Dissertação
Tipo de acesso: Acesso aberto
Idioma: por
Instituição de defesa: Universidade Estadual Paulista (Unesp)
Programa de Pós-Graduação: Não Informado pela instituição
Departamento: Não Informado pela instituição
País: Não Informado pela instituição
Palavras-chave em Português:
Link de acesso: http://hdl.handle.net/11449/92037
Resumo: Uma das características mais importantes das teorias de gauge não-Abelianas é a não-linearidade das equações de campo clássicas. Mostra-se no contexto da teoria de Yang-Mills que essa característica pode fazer com que o campo de gauge apresente comportamento caótico. Isso pode acontecer mesmo quando estivermos considerando a dinâmica do campo na ausência de fontes, isto é, o vácuo da teoria de Yang-Mills. Discutimos a relação entre os comportamentos caótico e ergódico. Em seguida, introduzimos a formulação de Berdichevsky da Mecânica Estatística Clássica para sistemas dinâmicos Hamiltonianos que são ergódicos e possuem poucos graus de liberdade. A Mecânica Estatística de Berdichevsky é usada para estudar a situação mais simples numa teoria de gauge não-Abeliana onde as variáveis de campo são caóticas e o espaço de fase correspondente tem a propriedade geométrica necessária. Mostramos que, para os propósitos desse estudo, um par de campos escalares complexos deve ser incluído no problema. Mais precisamente, analisamos o modelo de Higgs não-Abeliano; a Lagrangiana da teoria considerada possui uma simetria SU(2). A transição de uma descrição dinâmica do sistema de YangMills-Higgs (fora do equilíbrio termodinâmico) para uma descrição termodinâmica (quando ele atingiu o equilíbrio) é investigada numericamente. Mostra-se que depois de um tempo suficientemente longo as soluções numéricas se comportam de tal maneira que o sistema pode ser descrito de um jeito mais simples através de grandezas como a temperatura, calculadas de acordo com as prescriçõees da Mecânica Estatística de equilíbrio. Estas são previstas analiticamente para comparção com os resultados numéricos...