Detalhes bibliográficos
Ano de defesa: |
2011 |
Autor(a) principal: |
Woitek Junior, Marcio [UNESP] |
Orientador(a): |
Não Informado pela instituição |
Banca de defesa: |
Não Informado pela instituição |
Tipo de documento: |
Dissertação
|
Tipo de acesso: |
Acesso aberto |
Idioma: |
por |
Instituição de defesa: |
Universidade Estadual Paulista (Unesp)
|
Programa de Pós-Graduação: |
Não Informado pela instituição
|
Departamento: |
Não Informado pela instituição
|
País: |
Não Informado pela instituição
|
Palavras-chave em Português: |
|
Link de acesso: |
http://hdl.handle.net/11449/92037
|
Resumo: |
Uma das características mais importantes das teorias de gauge não-Abelianas é a não-linearidade das equações de campo clássicas. Mostra-se no contexto da teoria de Yang-Mills que essa característica pode fazer com que o campo de gauge apresente comportamento caótico. Isso pode acontecer mesmo quando estivermos considerando a dinâmica do campo na ausência de fontes, isto é, o vácuo da teoria de Yang-Mills. Discutimos a relação entre os comportamentos caótico e ergódico. Em seguida, introduzimos a formulação de Berdichevsky da Mecânica Estatística Clássica para sistemas dinâmicos Hamiltonianos que são ergódicos e possuem poucos graus de liberdade. A Mecânica Estatística de Berdichevsky é usada para estudar a situação mais simples numa teoria de gauge não-Abeliana onde as variáveis de campo são caóticas e o espaço de fase correspondente tem a propriedade geométrica necessária. Mostramos que, para os propósitos desse estudo, um par de campos escalares complexos deve ser incluído no problema. Mais precisamente, analisamos o modelo de Higgs não-Abeliano; a Lagrangiana da teoria considerada possui uma simetria SU(2). A transição de uma descrição dinâmica do sistema de YangMills-Higgs (fora do equilíbrio termodinâmico) para uma descrição termodinâmica (quando ele atingiu o equilíbrio) é investigada numericamente. Mostra-se que depois de um tempo suficientemente longo as soluções numéricas se comportam de tal maneira que o sistema pode ser descrito de um jeito mais simples através de grandezas como a temperatura, calculadas de acordo com as prescriçõees da Mecânica Estatística de equilíbrio. Estas são previstas analiticamente para comparção com os resultados numéricos... |