Detalhes bibliográficos
Ano de defesa: |
2021 |
Autor(a) principal: |
Silveira, Marcos Rogério |
Orientador(a): |
Não Informado pela instituição |
Banca de defesa: |
Não Informado pela instituição |
Tipo de documento: |
Dissertação
|
Tipo de acesso: |
Acesso aberto |
Idioma: |
por |
Instituição de defesa: |
Universidade Estadual Paulista (Unesp)
|
Programa de Pós-Graduação: |
Não Informado pela instituição
|
Departamento: |
Não Informado pela instituição
|
País: |
Não Informado pela instituição
|
Palavras-chave em Português: |
|
Link de acesso: |
http://hdl.handle.net/11449/202882
|
Resumo: |
Este trabalho apresenta um método para detecção de domínios maliciosos por meio do tráfego de DNS passivo. Para tanto, a abordagem utilizada é um dataset de DNS passivo como fonte de dados para a tarefa de classificação dos domínios entre maliciosos e legítimos. A partir deste dataset, são extraídas doze features exclusivas do tráfego DNS. Os registros presentes no dataset DNS passivo são rotulados utilizando allowlists e blocklists de nomes de domínios e IPs. Para balanceamento das classes, foi utilizado a técnica de Random Undersampling. Na etapa de treinamento, foram utilizados e comparados o desempenho dos três algoritmos de aprendizado de máquina supervisionado baseados em árvores de decisão. Os modelos foram testados considerando suas capacidades de identificar domínios maliciosos, o modelo com melhor desempenho foi o que utilizou o algoritmo XGBoost, com uma AUC média de 0,9776 e sem indicativos de overfitting presente. |