Detalhes bibliográficos
Ano de defesa: |
2023 |
Autor(a) principal: |
Kaio Max Aranda |
Orientador(a): |
Não Informado pela instituição |
Banca de defesa: |
Não Informado pela instituição |
Tipo de documento: |
Dissertação
|
Tipo de acesso: |
Acesso aberto |
Idioma: |
por |
Instituição de defesa: |
Universidade Estadual Paulista (Unesp)
|
Programa de Pós-Graduação: |
Não Informado pela instituição
|
Departamento: |
Não Informado pela instituição
|
País: |
Não Informado pela instituição
|
Palavras-chave em Português: |
|
Link de acesso: |
https://hdl.handle.net/11449/255007
|
Resumo: |
Em muitas situações práticas, é importante avaliar as relações entre os fatores que compõe um processo industrial e os efeitos de uma ou mais variáveis de resposta que são de interesse de uma empresa. A principal contribuição dessa dissertação é propor uma nova estrutura conceitual híbrida baseada na estrutura metodológica do DMAIC (Define - Definir, Measure - Medir, Analyse - Analisar, Improve - Melhorar, Control - Controlar), para otimizar problemas experimentais complexos com múltiplas respostas. Esse procedimento combina a Metodologia de Superfície de Resposta (RSM – Response Surface Methodology) com as funções Desirability (D), Modified Desirability (MD) e Compromise Programming (CP) com os algoritmos Generalized Reduce Gradient (GRG) e Evolutionary Solving Method (ESM). Fez-se uma aplicação real a um processo de laminação de vidros para descrever o uso da estrutura proposta. O procedimento permitiu testar diversas configurações envolvendo as funções D, MD, CP, adotando o algoritmo GRG e ESM, para otimizar o processo industrial estudado. A melhor configuração foi definida por um experimento prático de confirmação validada por engenheiros e especialistas da empresa que foi o objeto desse estudo, sendo esta a função Desirability clássica com o algoritmo Evolucionário. Como exemplo das vantagens de adotar a estrutura proposta na resolução de problemas de laminação de vidros, a melhor solução resultou em 49,86% de aumento na vida útil de rebolos de lapidação, correspondendo uma redução de 927 kg de aço por ano, e 41,7% de redução no consumo de pedras de dressagem, contabilizando uma redução total de 17.200 pedras por ano. |