Detalhes bibliográficos
Ano de defesa: |
2023 |
Autor(a) principal: |
Wayhs-Lopes, Larissa Drews |
Orientador(a): |
Não Informado pela instituição |
Banca de defesa: |
Não Informado pela instituição |
Tipo de documento: |
Tese
|
Tipo de acesso: |
Acesso aberto |
Idioma: |
eng |
Instituição de defesa: |
Universidade Estadual Paulista (Unesp)
|
Programa de Pós-Graduação: |
Não Informado pela instituição
|
Departamento: |
Não Informado pela instituição
|
País: |
Não Informado pela instituição
|
Palavras-chave em Português: |
|
Link de acesso: |
https://hdl.handle.net/11449/250948
|
Resumo: |
Aeroelasticidade não-linear é um campo de importância atual e a análise de estabilidade é parte dos requisitos para certificar aeronaves. Especificamente, folga geométrica é uma não-linearidade descontínua comumente observadas nas conexões de superfícies de controle, e pode alterar a estabilidade do sistema gerando oscilações de ciclo limite (LCOs), tipicamente prejudiciais à estrutura, inclusive em termos de fadiga. O presente trabalho é focado na importante etapa de previsão da LCO. Isso envolve prever a amplitude e a frequência do movimento para condições de voo específicas. O foco principal desta pesquisa é aprimorar métodos numéricos convencionais para superar as dificuldades geradas pela descontinuidade da folga. As principais contribuições incluem melhorias na técnica de Hénon para soluções no tempo e, no domínio da frequência, uma nova forma combinar funções descritivas com a análise de autovalores de um sistema aeroelástico equivalente. Uma formulação geral na forma de matriz é proposta para a técnica de Hénon, permitindo a inclusão de diferentes não-linearidades descontínuas,em qualquer grau de liberdade arbitrário. Duas aplicações físicas são apresentadas, uma envolvendo um aerofólio de três graus de liberdade com folga assimétrica e atrito na conexão da superfície de controle; e também um aerofólio com quatro graus é investigado com folga em duas conexões de superfícies de controle do bordo de fuga. Esta formulação também permite usar a técnica como um método de localização de eventos, e é utilizada neste trabalho para capturar pontos extremos durante a integração de tempo, tipicamente útil para detectar LCO, construir diagramas de bifurcação, e também as seções de Poincarè. Além disso, duas novas funções descritivas são propostas, sendo uma para prever o primeiro e terceiro harmônicos de um sistema com folga, e a outra para considerar folga e atrito na conexão da superfície de controle. Resultados teóricos demonstram que as estratégias propostas contribuem para investigar sistemas aeroelásticos com não-linearidade descontínua. |