Detalhes bibliográficos
Ano de defesa: |
2014 |
Autor(a) principal: |
Roldan, Ismael Ulises Miranda [UNESP] |
Orientador(a): |
Não Informado pela instituição |
Banca de defesa: |
Não Informado pela instituição |
Tipo de documento: |
Tese
|
Tipo de acesso: |
Acesso aberto |
Idioma: |
por |
Instituição de defesa: |
Universidade Estadual Paulista (Unesp)
|
Programa de Pós-Graduação: |
Não Informado pela instituição
|
Departamento: |
Não Informado pela instituição
|
País: |
Não Informado pela instituição
|
Palavras-chave em Português: |
|
Link de acesso: |
http://hdl.handle.net/11449/154422
|
Resumo: |
The fermentation of sugarcane bagasse hydrolyzate (BCA) allows obtaining ethanol 2G. One of the main challenges in this work was to develop methodologies for obtaining rich hydrolysates into glucose for fermentation. Seven pretreatments BCA resulted from simplifications and adjustments based on literature procedures were carried out with the goal of getting rich fractions from pretreatment most appropriate in converting cellulose into fermentable sugars into ethanol. Techniques of chemical, morphological and structural characterization were applied to sugarcane bagasse and cellulose-enriched fractions were submitted the various pretreatments in order to predict and compare it. These techniques were SEM, FT-IR, XRD, TG and chemical analysis using the TAPPI method. The pre- treatment based on the use of sodium hydroxide assisted by microwave proved to be more efficient and this has resulted in fractions rich in cellulose PT6. Concentrations of total phenols and furans resulting from acid extractions applied to cellulose-enriched fractions were also determined. The highest concentrations of phenol extractions were obtained for fractions rich in cellulose using 30% (w/v) sulfuric acid in the presence of 100 mM FeCl3, whereas solutions of sulfuric acid, both total phenols as furans were obtained at lower concentrations possibly due to degradation. However, the use of 30 % (w/v) sulfuric acid was not recommended for extracting minor fractions of other concentrations. Finally, the best pretreatment resulted in a fraction PT6 for its higher performance and lower loss of the initial mass of the BCA, whereas treatment with 6% (w/v) sulfuric acid in the presence of 100 mM FeCl3 total reducing sugars released more non- solubilized during the pretreatment . This seems the most promising enriched fractions of cellulose for obtaining second-generation ethanol. |