Detalhes bibliográficos
Ano de defesa: |
2015 |
Autor(a) principal: |
Ortunho, Tiago Veronese [UNESP] |
Orientador(a): |
Não Informado pela instituição |
Banca de defesa: |
Não Informado pela instituição |
Tipo de documento: |
Dissertação
|
Tipo de acesso: |
Acesso aberto |
Idioma: |
por |
Instituição de defesa: |
Universidade Estadual Paulista (Unesp)
|
Programa de Pós-Graduação: |
Não Informado pela instituição
|
Departamento: |
Não Informado pela instituição
|
País: |
Não Informado pela instituição
|
Palavras-chave em Português: |
|
Link de acesso: |
http://hdl.handle.net/11449/134247
|
Resumo: |
This research shows the steady state operating principle of triphasic induction motors to approach the tests necessary to obtain their parameters and different speed variation possibilities. After were performed an analysis of the dynamics of motor modeling, focusing on the transformation of axes, and analyzing the types of control, scalar, direct and indirect vector (guided by the rotor flux at the stator flux and flux air gap) and direct torque control. The converters CC – AC used to drive the induction motor are also aborded, along with their main methods of modulation. A review of the state of the art regarding the drives and control systems most studied in recent years on the subject is presented. After were studied the concepts of quadratic stability proposed by Lyapunov, together with the H∞ control, which were the basis for the development of robust controllers based on Linear Matrix Inequality (LMI). In this research were developed five types of robust controllers with LMI: the robust controller, the controller with decay rate (for sigma 1 and 10), H∞ controller, H∞ controller with D- Stability and H∞ controller with D- Stability and feedback the integral of output error, considering in all cases that the triphasic induction motor is driven by rotor flux. The controllers were designed for four different configurations and were considered the first case - the speed variation (5 rad/s up to the rated); second case - the speed variation and uncertainty in the rotor resistance (3%); third case - variations in speed and uncertainty in the rotor time constant (5%); fourth case - variations in speed and uncertainties in the rotor time constant (15%) and the stator (10%). In all researched controllers were analyzed the response time of the outputs for a unit step input load torque disturbance. This analysis aimed to evaluate system behavior, however, for a complete and rigorous analysis of the system, with greater fidelity, was set up in Matlab/ Simulink software a platform that contains the full set of drive, power and control system with three-phase power, full-wave rectifier, bus DC – DC, converter DC – AC, three-phase induction motor and sensors. This platform allows the simulation of various tests with induction motor drive, and also the implementation and result analysis using a broad class of controllers. Simulations of the system without load and considering a nominal engine load step applied after 1.5 seconds are presented. In this program were analyzed the open-loop system with the aim of understanding the motor behavior, and the closed loop system was simulated considering four cases, six robust controllers and the classic PI controller. The simulations display the waveforms of triphasic current and the line voltage of the MIT, the triggers for inverter drive, currents and voltages of the direct-axis and quadrature, the electromagnetic torque and speed. The best results were obtained for the H∞ controllers with D-Stability and H∞ with D-Stability and feedback of the integral of output error. The feedback system with this controller tracked the speed reference with a small setting time. Based on this results it is possible the application of this control technique in industrial environments. |