Uso de absorvedores de vibrações eletromecânicos lineares e não-lineares em sistemas não-lineares e não-ideais

Detalhes bibliográficos
Ano de defesa: 2009
Autor(a) principal: Iossaqui, Juliano Gonçalves [UNESP]
Orientador(a): Não Informado pela instituição
Banca de defesa: Não Informado pela instituição
Tipo de documento: Dissertação
Tipo de acesso: Acesso aberto
Idioma: por
Instituição de defesa: Universidade Estadual Paulista (Unesp)
Programa de Pós-Graduação: Não Informado pela instituição
Departamento: Não Informado pela instituição
País: Não Informado pela instituição
Palavras-chave em Português:
Link de acesso: http://hdl.handle.net/11449/97024
Resumo: Neste trabalho investigou-se a efetividade de um absorvedor de vibrações eletromecânico linear e um absorvedor de vibrações eletromecânico não-linear na atenuação de vibrações em estruturas não-ideais. Dois modelos não-lineares foram utilizados para representar o sistema estudado, uma viga engastada excitada por uma fonte não-ideal. Um modelo simplificado que considera o torque gerado pelo motor como sendo uma função linear e um modelo mais completo que considera as propriedades elétricas do motor CC. As equações que governam a dinâmica do sistema foram deduzidas pelas equações de Lagrange, parte mecânica, e pelas leis de Kirchhoff, parte elétrica. Simulações numéricas dos dois modelos foram realizadas no módulo Simulink® do software MATLAB®. Uma análise do efeito dos parâmetros não-lineares no sistema foi realizada. Resultados mostram a redução do salto nas curvas de resposta-frequência - efeito Sommerfeld - fenômeno típico de sistemas não-ideais. O estudo da estabilidade foi realizado conforme a análise de estabilidade de Lyapunov. Uma solução analítica aproximada, para o movimento estacionário do sistema, foi obtida através de um método de perturbação (método da média). Para completar o estudo, analisou-se a interação dinâmica dos absorvedores de vibrações eletromecânicos em outros modelos de sistemas não-ideais que apresentam comportamentos caóticos. Os resultados obtidos mostram a supressão de caos, através da transformação de movimentos caóticos em movimentos periódicos.