Desempenho das redes neurais artificiais na estimativa das variáveis físicas e químicas do solo

Detalhes bibliográficos
Ano de defesa: 2005
Autor(a) principal: Angelico, João Carlos [UNESP]
Orientador(a): Não Informado pela instituição
Banca de defesa: Não Informado pela instituição
Tipo de documento: Tese
Tipo de acesso: Acesso aberto
Idioma: por
Instituição de defesa: Universidade Estadual Paulista (Unesp)
Programa de Pós-Graduação: Não Informado pela instituição
Departamento: Não Informado pela instituição
País: Não Informado pela instituição
Palavras-chave em Português:
Link de acesso: http://hdl.handle.net/11449/101867
Resumo: Métodos estatísticos de interpolação são freqüentemente utilizados para se obter as características dos solos em locais não amostrados, visando diminuir o número de amostras necessárias para um bom mapeamento do campo. Nesse trabalho, a estimativa da variabilidade espacial de atributos do solo foi realizada de duas maneiras: primeiramente utilizando-se os métodos estatísticos da krigagem e da co-krigagem e posteriormente as redes neurais artificiais. Os resultados obtidos pelos dois métodos foram comparados, com a finalidade de se verificar a eficiência das redes neurais artificiais na estimativa de atributos do solo. Os resultados mostraram que as redes neurais artificiais, em particular as redes Perceptron, com uma e com duas camadas de neurônios, são capazes de estimar as variabilidades espaciais dos solos com precisão maior do que os métodos estatísticos da krigagem e da co-krigagem. As redes neurais artificiais também se mostraram eficientes na estimativa de uma determinada variável do solo em função de sua classe textural.