Similaridade comportamental do consumo residencial de eletricidade por rede neural baseada na Teoria da Ressonância Adaptativa

Detalhes bibliográficos
Ano de defesa: 2016
Autor(a) principal: Justo, Daniela Sbizera [UNESP]
Orientador(a): Não Informado pela instituição
Banca de defesa: Não Informado pela instituição
Tipo de documento: Tese
Tipo de acesso: Acesso aberto
Idioma: por
Instituição de defesa: Universidade Estadual Paulista (Unesp)
Programa de Pós-Graduação: Não Informado pela instituição
Departamento: Não Informado pela instituição
País: Não Informado pela instituição
Palavras-chave em Português:
Link de acesso: http://hdl.handle.net/11449/143947
Resumo: Esta pesquisa será dedicada ao desenvolvimento de uma metodologia com vistas à compreensão e ao exame do comportamento do hábito de consumo de eletricidade residencial, via análise de similaridade, baseado no uso de uma rede neural da família ART (Adaptive Resonance Theory). Trata-se de uma rede neural composta por dois módulos ART-Fuzzy, cujo treinamento é realizado de modo não supervisionado. No primeiro módulo, serão usadas, como entrada, as informações que caracterizam os hábitos de consumo e a situação socioeconômica. A saída do primeiro módulo junto com os dados referentes aos equipamentos eletroeletrônicos da residência compõem a entrada do segundo módulo que, finalmente, produz informações, na saída, relativas ao diagnóstico pretendido, ou seja, a formação de agrupamentos similares (clusters). Todo o processamento da rede neural modular é realizado com dados binários, os quais são gerados a partir de informações quantitativas e qualitativas. As redes neurais da família ART são estáveis e plásticas. A estabilidade refere-se à garantia de sempre produzir soluções, ou seja, não se observa problemas relativos à má convergência. A plasticidade é uma característica que possibilita a execução do treinamento de forma contínua sem destruir o conhecimento adquirido previamente. É um recurso pouco observado nas demais redes neurais disponíveis na literatura especializada. Com essas propriedades (estabilidade e plasticidade), combinada com o processamento de dados essencialmente binários, confere ao sistema neural uma ampla capacidade de produzir objetivos que podem ser facilmente modificados visando atender requisitos preestabelecidos pelos usuários (consumidor, empresa do setor elétrico). Neste sentido, o resultado esperado é a obtenção de informações referentes à similaridade de consumidores, à qual pode-se vislumbrar alguns benefícios, por parte dos consumidores, como melhorar o hábito de consumir energia elétrica, oferecendo também, por meio do conhecimento dos consumidores similares, a obtenção de melhores estratégias de negociação com os fornecedores, principalmente, no caso de sistemas smart grids. Neste novo paradigma do setor elétrico, há uma forte tendência do(s) consumidor(es) escolher(em) livremente a empresas fornecedoras de energia elétrica. Além disso, é discutida uma melhor forma para a realização da previsão de carga em pontos da rede elétrica onde há uma maior incerteza, e.g., nos barramentos mais próximos do consumidor (transformadores etc.), i.e., as incertezas no contexto da previsão de carga total do sistema são aumentadas à medida que se adentra a partir da carga global até chegar ao consumidor final, em especial ao usuário residencial. A base de dados, para a fase de treinamento da rede neural, é construída a partir de informações disponibilizadas por consumidores voluntários via o preenchimento de formulário. Realizada a fase de treinamento, a rede neural adquire um conhecimento incipiente afeito de ser aperfeiçoado ao longo do tempo, quando se implementa o recurso da plasticidade.