Estudo do comportamento térmico das nanopartículas de Fe3O4 funcionalizadas

Detalhes bibliográficos
Ano de defesa: 2023
Autor(a) principal: Baldini Fumis, Daniel
Orientador(a): Não Informado pela instituição
Banca de defesa: Não Informado pela instituição
Tipo de documento: Dissertação
Tipo de acesso: Acesso aberto
Idioma: por
Instituição de defesa: Universidade Estadual Paulista (Unesp)
Programa de Pós-Graduação: Não Informado pela instituição
Departamento: Não Informado pela instituição
País: Não Informado pela instituição
Palavras-chave em Português:
Link de acesso: http://hdl.handle.net/11449/243041
Resumo: A mistura entre os íons de ferro Fe3+ e Fe2+ em uma proporção molar 2:1 leva a formação de óxido de ferro Fe3O4 comumente conhecido como magnetita, a partir da síntese por co-precipitação. As nanopartículas desses óxidos possuem uma superfície muito reativa, podendo sofrer oxidação para estruturas γ-Fe2O3 (maghmita) e α-Fe2O3 (hematita). Com base nisso, é muito importante evitar o processo de oxidação dessas nanopartículas e uma das estratégias para isso é a funcionalização da superfície com moléculas orgânicas ou inorgânicas. Deste modo, no presente trabalho, foi estudado o comportamento térmico das nanopartículas sintetizadas de Fe3O4 e Fe3O4@EDTA, obtidas a partir do método de co-precipitação seguida da funcionalização com EDTA, numa única etapa sintética. As nanopartículas foram caracterizadas com a termogravimetria (TG/DTG), análise térmica diferencial (DTA), calorimetria exploratória diferencial (DSC), difratometria de raios-X (DRX), microscopia eletrônica de varredura (MEV) e de transmissão (MET) e espectroscopia dispersiva de energia de raios X (EDS). Os resultados da análise térmica mostraram um intermediário de reação, γ-Fe2O3, na reação de decomposição das nanopartículas de Fe3O4 e Fe3O4-EDTA, conforme confirmado pelas curvas TG-DTA, DSC e DRX. A formação de α-Fe2O3 ocorreu nas para as duas nanopartículas, porém na nanopartícula funcionalizada o evento térmico foi deslocado para maiores temperaturas, indicando que a funcionalização está estabilizando termicamente está nanopartícula. Os resultados da variação da energia de ativação para a reação de formação de α-Fe2O3 foram maiores para a nanopartícula funcionalizadas o que concorda com os resultados da análise térmica. Além disso, a funcionalização da superfície das nanopartículas alterou o mecanismo de formação de α-Fe2O3 de processo auto-catalítica para Fe3O4 para os processos auto-catálitico (α até 48,2% ) e difusional ( acima de α 48,2%) para a nanopartícula de Fe3O4-EDTA.